50 research outputs found

    Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI screening parameters for the detection of extended-spectrum β-lactamase production in clinical Enterobacteriaceae isolates

    Get PDF
    Objectives To compare the performance of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI breakpoints following their revision in 2010, for the detection of extended-spectrum β-lactamase (ESBL) production in Enterobacteriaceae. Methods 236 well-characterized clinical isolates (including 118 ESBL producers) were investigated by antibiotic disc testing with cefpodoxime, ceftriaxone, cefepime, cefotaxime EUCAST (5 μg/disc), ceftazidime EUCAST (10 μg/disc), cefotaxime CLSI (30 μg/disc) and ceftazidime CLSI (30 μg/disc) with the Kirby-Bauer method. Additionally, synergy phenomena were recorded between amoxicillin/clavulanic acid discs (20/10 μg/disc) and cefepime (30 μg/disc), EUCAST cefotaxime (5 μg/disc), EUCAST ceftazidime (10 μg/disc), CLSI cefotaxime (30 μg/disc) and CLSI ceftazidime [30 μg/disc; disc approximation method (DAM)]. Results Overall sensitivity of the cefotaxime EUCAST non-susceptible breakpoint equalled sensitivity of the cefotaxime CLSI ESBL screening breakpoint (99.2%). With the ceftazidime EUCAST non-susceptible breakpoint, 27/118 ESBL-producing isolates were not detected, whereas the ceftazidime CLSI ESBL screening breakpoint missed 41/118 ESBL-producing isolates. For cefpodoxime the resistant EUCAST breakpoint showed higher sensitivity for ESBL detection compared with the CLSI ESBL screening breakpoint/disc content (100% versus 98.3%, respectively). Sensitivities of ceftazidime and cefotaxime DAM with CLSI or EUCAST disc contents were comparable (sensitivities ranging from 84.7% to 89.8%). DAM with cefepime displayed the highest overall sensitivity (96.6%). In AmpC-producing isolates, synergy of amoxicillin/clavulanic acid with cefepime showed sensitivity and specificity for ESBL detection of 100% and 97.4%, respectively. Conclusions EUCAST non-susceptible breakpoints for ceftazidime and cefpodoxime detect more ESBL-producing Enterobacteriaceae isolates compared with corresponding CLSI ESBL screening breakpoints. Implementation of the cefepime DAM can facilitate ESBL screening, especially in strains producing an AmpC β-lactamase since the test shows high sensitivity and specificit

    Evaluation of the AID ESBL line probe assay for rapid detection of extended-spectrum β-lactamase (ESBL) and KPC carbapenemase genes in Enterobacteriaceae

    Get PDF
    Objectives This study aimed at evaluating the AID ESBL line probe assay for the detection of extended-spectrum β-lactamase (ESBL) and KPC carbapenemase genes in Enterobacteriaceae. Methods The AID ESBL line probe assay was verified for accuracy of its probes using PCR products from clinical ESBL Enterobacteriaceae strains harbouring TEM, SHV and CTX-M ESBL genes and KPC genes and mutant fusion PCR products generated from Enterobacteriaceae strains containing wild-type (wt) TEM and wt SHV. Sensitivity and specificity was determined testing a set of 424 clinical Enterobacteriaceae strains (including 170 strains negative for TEM, SHV, CTX-M and KPC to evaluate the possibility of false positive signals). Results The line probe assay was shown to detect with 100% accuracy ESBL genes for which oligonucleotide probes are present in the assay. Testing a set of 424 clinical Enterobacteriaceae strains showed 100% sensitivity and specificity for the detection and differentiation of TEM, SHV and CTX-M ESBL genes present in that group. In addition, the line probe assay detected KPC genes accurately. Conclusions The AID ESBL line probe assay is an accurate and easy-to-use test for the detection of ESBL and KPC genes, which can readily be implemented in the diagnostic laborator

    Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment

    Get PDF
    BACKGROUND: Studying within-host genetic diversity of Mycobacterium tuberculosis (Mtb) in patients during treatment may identify adaptations to antibiotic and immune pressure. Understanding the significance of genetic heteroresistance, and more specifically heterozygous resistance-associated variants (RAVs), is clinically important given increasing use of rapid molecular tests and whole genome sequencing (WGS). METHODS: We analyse data from six studies in KwaZulu-Natal, South Africa. Most patients (>75%) had baseline rifampicin resistance. Sputum was collected for culture at baseline and at between two and nine intervals until month six. Positive cultures underwent WGS. Mixed infections and reinfections were excluded from analysis. FINDINGS: Baseline Mtb overall genetic diversity (at treatment initiation or major change to regimen) was associated with cavitary disease, not taking antiretroviral therapy if HIV infected, infection with lineage 2 strains and absence of second-line drug resistance on univariate analyses. Baseline genetic diversity was not associated with six-month outcome. Genetic diversity increased from baseline to weeks one and two before returning to previous levels. Baseline genetic heteroresistance was most common for bedaquiline (6/10 [60%] of isolates with RAVs) and fluoroquinolones (9/62 [13%]). Most patients with heterozygous RAVs on WGS with sequential isolates available demonstrated RAV persistence or fixation (17/20, 85%). New RAVs emerged in 9/286 (3%) patients during treatment. We could detect low-frequency RAVs preceding emergent resistance in only one case, although validation of deep sequencing to detect rare variants is required. INTERPRETATION: In this study of single-strain Mtb infections, baseline within-host bacterial genetic diversity did not predict outcome but may reveal adaptations to host and drug pressures. Predicting emergent resistance from low-frequency RAVs requires further work to separate transient from consequential mutations. FUNDING: Wellcome Trust, NIH/NIAID

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Diagnostische Besonderheiten der atypischen Mykobakteriose bei Kindern

    No full text

    Evaluation of the AID ESBL line probe assay for rapid detection of extended-spectrum β-lactamase (ESBL) and KPC carbapenemase genes in Enterobacteriaceae

    Full text link
    OBJECTIVES: This study aimed at evaluating the AID ESBL line probe assay for the detection of extended-spectrum β-lactamase (ESBL) and KPC carbapenemase genes in Enterobacteriaceae. METHODS: The AID ESBL line probe assay was verified for accuracy of its probes using PCR products from clinical ESBL Enterobacteriaceae strains harbouring TEM, SHV and CTX-M ESBL genes and KPC genes and mutant fusion PCR products generated from Enterobacteriaceae strains containing wild-type (wt) TEM and wt SHV. Sensitivity and specificity was determined testing a set of 424 clinical Enterobacteriaceae strains (including 170 strains negative for TEM, SHV, CTX-M and KPC to evaluate the possibility of false positive signals). RESULTS: The line probe assay was shown to detect with 100% accuracy ESBL genes for which oligonucleotide probes are present in the assay. Testing a set of 424 clinical Enterobacteriaceae strains showed 100% sensitivity and specificity for the detection and differentiation of TEM, SHV and CTX-M ESBL genes present in that group. In addition, the line probe assay detected KPC genes accurately. CONCLUSIONS: The AID ESBL line probe assay is an accurate and easy-to-use test for the detection of ESBL and KPC genes, which can readily be implemented in the diagnostic laboratory
    corecore