751 research outputs found

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    Get PDF
    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short range correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio

    Regularization of Diagrammatic Series with Zero Convergence Radius

    Get PDF
    The divergence of perturbative expansions for the vast majority of macroscopic systems, which follows from Dyson's collapse argument, prevents Feynman's diagrammatic technique from being directly used for controllable studies of strongly interacting systems. We show how the problem of divergence can be solved by replacing the original model with a convergent sequence of successive approximations which have a convergent perturbative series. As a prototypical model, we consider the zero-dimensional ψ4\vert \psi \vert^4 theory.Comment: 4 pages, 3 figure

    Supersolid phase with cold polar molecules on a triangular lattice

    Full text link
    We study a system of heteronuclear molecules on a triangular lattice and analyze the potential of this system for the experimental realization of a supersolid phase. The ground state phase diagram contains superfluid, solid and supersolid phases. At finite temperatures and strong interactions there is an additional emulsion region, in contrast to similar models with short-range interactions. We derive the maximal critical temperature TcT_c and the corresponding entropy S/N=0.04(1)S/N = 0.04(1) for supersolidity and find feasible experimental conditions for its realization.Comment: 4 pages, 4 figure

    Original Macromolecular Architectures Based on poly(ε-caprolactone) and poly(ε-thiocaprolactone) Grafted onto Chitosan Backbone

    Get PDF
    Polyester and/or polythioester grafted chitosan copolymers were synthesized. For that, poly(ε-caprolactone) (PCL), poly(ε-thiocaprolactone) (PTCL), and their copolymers were first synthesized by ring opening polymerization. Copolymers with caprolactone:thiocaprolactone (CL:TCL) molar ratios of 2:1, 1:1, 1:2 were synthesized. All of the synthesized macromolecular architectures were characterized using different spectral (Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H-NMR), X-Ray diffraction (XRD)) and thermal (Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA)) methods. Grafting was then performed according two distinct routes: (i) using a blend of both homopolymers (PCL and PTCL) or (ii) using pre-synthesized copolymers with controlled CL:TCL ratios. Hexamethylene diisocyanate was used as a grafting/coupling agent through urethane bonds with high yield. Grafting preferentially occurred at sulfur sites. The results indicated that PTCL is more reactive and favorable than PCL for grafting onto chitosan. With the homopolymers blend grafting route, the corresponding materials mostly had a higher PTCL portion than expected. To obtain polyester grafted chitosan with a determined CL:TCL ratio, the copolymer grafting route would yield better result

    Pt decorated amorphous RuIr alloys as high efficiency electrocatalyst for methanol oxidation

    Get PDF
    This study focuses primarily on improving the utilization and activity of anodic catalysts for methanol electro-oxidation. The Direct Methanol Fuel Cell (DMFC) anodic catalyst, a carbon supported Pt decorated amorphous RuIr nanoparticles catalyst (Pt@RuIr/C) was prepared by a two-step reduction method. The structure of Pt@RuIr/C nanoparticles was confirmed by Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). The Pt@RuIr electrocatalysts exhibited good uniformity in distribution. Cyclic Voltammetry experiments showed that under the same quality of noble-metal, the Pt@RuIr/C catalyst had higher activity than the PtRuIr/C catalyst for methanol oxidation. It was also shown that the as-prepared structure of the Pt decorated amorphous RuIr alloys could obviously decrease the usage of noble-metal and enhance its catalytic activity at the same time.Web of Scienc

    Identification of post-transcriptionally regulated Xenopus tropicalis maternal mRNAs by microarray

    Get PDF
    Cytoplasmic control of the adenylation state of mRNAs is a critical post-transcriptional process involved in the regulation of mRNAs stability and translational efficiency. The early development of Xenopus laevis has been a major model for the study of such regulations. We describe here a microarray analysis to identify mRNAs that are regulated by changes in their adenylation state during oogenesis and early development of the diploid frog Xenopus tropicalis. The microarray data were validated using qRT–PCR and direct analysis of the adenylation state of endogenous maternal mRNAs during the period studied. We identified more than 500 mRNAs regulated at the post-transcriptional level among the 3000 mRNAs potentially detected by the microarray. The mRNAs were classified into nine different adenylation behavior categories. The various adenylation profiles observed during oocyte maturation and early development and the analyses of 3′-untranslated region sequences suggest that previously uncharacterized sequence elements control the adenylation behavior of the newly identified mRNAs. These data should prove useful in identifying mRNAs with important functions during oocyte maturation and early development

    Optimal Monte Carlo Updating

    Get PDF
    Based on Peskun's theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics. As an application in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model which have been simulated by the directed loop algorithm in the stochastic series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio

    Finite-temperature effects on the superfluid Bose-Einstein condensation of confined ultracold atoms in three-dimensional optical lattices

    Full text link
    We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the the on--site interaction in the BH model the robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature--interaction regimes

    Quantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold Fermions in an Optical Lattice

    Get PDF
    We perform a quantitative simulation of the repulsive Fermi-Hubbard model using an ultracold gas trapped in an optical lattice. The entropy of the system is determined by comparing accurate measurements of the equilibrium double occupancy with theoretical calculations over a wide range of parameters. We demonstrate the applicability of both high-temperature series and dynamical mean-field theory to obtain quantitative agreement with the experimental data. The reliability of the entropy determination is confirmed by a comprehensive analysis of all systematic errors. In the center of the Mott insulating cloud we obtain an entropy per atom as low as 0.77k(B) which is about twice as large as the entropy at the Neel transition. The corresponding temperature depends on the atom number and for small fillings reaches values on the order of the tunneling energy
    corecore