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Regularization of Diagrammatic Series with Zero Convergence Radius

Lode Pollet,1 Nikolay V. Prokof’ev,2, 3 and Boris V. Svistunov2, 3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

3Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia
(Dated: June 24, 2010)

The divergence of perturbative expansions for vast majority of macroscopic systems, which follows
from Dyson’s collapse argument, prevents Feynman’s diagrammatic technique from being directly
used for controllable studies of strongly interacting systems. We show how the problem of di-
vergence can be solved by replacing the original model with a convergent sequence of successive
approximations which have a convergent perturbative series. As a prototypical model, we consider
the zero-dimensional |ψ|4 theory.

PACS numbers: 02.70.Ss, 05.10.Ln

Almost sixty years ago, Dyson provided a physical ar-
gument why power-series expansions in quantum elec-
trodynamics are divergent even after proper charge and
mass renormalization [1]. The argument is straightfor-
wardly generalizable to a wide range of classical and
quantum statistical problems and has far-reaching con-
sequences for any perturbative approach [2]. It goes as
follows: The interaction potential between two electrons
with charge e is of the form e2/r12, with r12 the distance
between them. When performing a series expansion in
e2 (i.e., the interaction strength) a physical quantity of
interest can be expressed as

F (e2) = a0 + a2e
2 + a4e

4 + . . . (1)

If the series have finite convergence radius ξ then F (e2)
is an analytic function at e = 0, implying that for
sufficiently small values of e, F (−e2) is a well-behaved
analytic function. However, F (−e2) corresponds to a
fictitious world with purely imaginary particle charges
where the interaction potential is of the form −e2/r12,
and is thus attractive. In this fictitious world, the
vacuum state would be unstable against production of
an infinite number of electron-positron pairs, each put in
a separate region of space since the gain in the negative
Coulomb energy is larger than the increase in the kinetic
energy. Hence, Dyson concluded that F (e2) cannot be
analytic around e = 0 and that the convergence radius
must be zero, ξ = 0.

The |ψ|4 theory is associated with the following parti-
tion function in d dimensions:

Z =

∫
Dψ e−

∫
ddr {|∇ψ|2+λ|ψ|4}, (2)

describing the statistics of the classical complex-valued
field ψ(r). This effective field theory is often used to de-
scribe critical behavior of the superfluid phase transitions
in interacting Bose systems. The model (2) can be solved
numerically very efficiently by a number of methods, but
none of them is based on an expansion in λ. A successful

regularization of the perturbative expansion in λ for the
|ψ|4 theory would change the status of the standard dia-
grammatic technique to that of a systematic method for
accurate studies of strongly correlated systems, and pro-
vide the basis for numerical treatments in the framework
of (bold) Diagrammatic Monte Carlo [3]. Since Taylor ex-
pansion in λ is subject to the Dyson’s collapse argument,
it is clear that some regularization of the theory is re-
quired by which we mean any sequence of field-theoretical
approximations to the original model, controlled by reg-
ulator N , leading to a diagrammatic series with (at least)
a finite convergence radius. The correct physical result is
obtained after extrapolation of N to infinity. As an ex-
ample of such a regularization, we mention a continuous-
space (finite-temperature) system of fermions with trun-
cated single-particle momenta. Truncation sets the limit
on the maximal density of the system, thereby saving the
problem from Dyson’s collapse and allowing one to em-
ploy the diagrammatic treatment up to high-order (see,
e.g., [4]). While we do not exclude the possibility that
in specific cases the regularization procedure might ulti-
mately be reduced to a re-summation scheme, we real-
ize that a generic regularization protocol, in view of the
mathematical ambiguity of restoring a function from an
asymptotic series with zero convergence radius, should
derive from the series provenance, i.e. explicitly depend
on the form of the original theory. We stress that we
seek a regularization which preserves the structure of di-
agrammatic expansions.

In this Letter, we introduce a class of regularization
techniques that introduce counter-terms to the diagram-
matic series. In this approach, the so-called “sign bless-
ing”, i.e. sign alternation of the same-order diagrams
(cf. the fermionic case [5]) of a regularized series—as
contrasted to the sign-definiteness of the same-order di-
agrams of the original theory—is responsible for mutual
cancelation of contributions from the factorial number of
diagrams of a given order and series convergence.

Focusing solely on the convergence properties, it is
instructive [2] to reduce the theory (2) to its zero-

ar
X

iv
:1

00
6.

45
19

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
3 

Ju
n 

20
10



2

dimensional extreme. In this case, the field ψ(r) is re-
placed by a complex number ψ and the partition function
reduces to the integral (x ≡ |ψ|2)

I(λ) =

∫ ∞
0

dx e−x−λx
2

=

√
π

4λ
e

1
4λ erfc

(
1

2
√
λ

)
. (3)

In order to understand the convergence properties of the
perturbative approximations in λ for the |ψ|4 theory, it
suffices to do that for the integral I(λ).

We start with identifying the problem for the standard
Taylor series representation

e−λx
2

= lim
N→∞

N∑
k=0

(−λ)k

k!
x2k , (4)

which is that, reversing the order of taking the limit
N → ∞ and integrating over x, one obtains a series di-
verging as ∼ λk(2k)!/k!. This is a hallmark for an asymp-
totic series with zero convergence radius. An equivalent
observation is that for any finite N the integral is domi-
nated by values of x where the finite sum is not providing
an accurate description of the original exponent [6]. Us-
ing a different representation for the exponential function

e−λx
2

= lim
N→∞

ZN (x) = lim
N→∞

(
1− λx2

N

)N
, (5)

also fails for exactly the same reason. It formally pro-
duces a sequence of integrals IN (λ), by replacing e−λx

2 →
ZN (x), which takes us away from the original problem
because the dominant contribution to IN (λ) comes from
x ∼ N , as contrasted to the scale x <∼ 1 of the original
integral. Equation (4) can be transformed into Eq. (5) by
applying a resummation technique to the original Taylor
series, (

1− λx2

N

)N
≡

N∑
k=0

(−λ)k

k!
x2kf(k,N) , (6)

where the resummation function f(k,N) = k!CkN/N
k is

such that f(k � N) ≈ 1 and decreasing fast for k → N .
Formally, f is supposed to suppress the leading diver-
gence of the original series which is not the case for
Eq. (5). One may seek other functions f(k,N) rendering
the extrapolation procedure N → ∞ meaningful but as
far as we know the solution was not found yet, nor is it
clear that it exists. However, as we prove below, the solu-
tion does exist when the series are generalized to include
additional counter-terms; namely, within the

e−λx
2

= lim
N→∞

∑
k=0

xk f(k,N) (7)

representation, where f(k,N) is restricting summation
over k to some polynomial of finite order which scales
with N . We require that the expansion is in terms of

integer powers of x since otherwise the construction of
Feynman’s diagrams (which is our ultimate goal) be-
comes problematic. To generate the standard Feynman
diagrammatic expansion based on Wick’s theorem one
has to introduce the exponential

ZN (x) ≡ eln[ZN (x)] , (8)

and expand the logarithm in powers of x.
Our solution is based on designing an alternative rep-

resentation of the exponential function wich has to sat-
isfy several requirements when expanded in powers of
the coupling parameter. A successful perturbative ap-
proach has to satisfy the conditions of (i) convergence of
the λ-expansion of IN (λ) for all λ > 0 at any fixed N ,
and (ii) meaningful extrapolation to the N → ∞ limit
to ensure that limN→∞ IN (λ) = I(λ). Given that the
theory (2) features non-analyticity at the second-order
phase transition point, one might think that the condi-
tion (i) should be weakened to sufficiently small λ’s. Nev-
ertheless, we consciously require convergence everywhere
to guarantee that the divergence of the λ-expansion of
the field-theoretical counterpart of IN (λ) is exclusively
due to the phase transition in the macroscopic limit; the
convergence radius remaining infinite for any finite-size
system (qualitatively analogous to our zero-dimensional
model).

Let us introduce the parameterization

y = ux2/m, u = (λ/N)
1/m

, (9)

with m an integer number, and note that the most se-
vere problem with Eq. (5) can be overcome by seeking a
solution in the form

e−λx
2

= lim
N→∞

[f(y)]
N
, (10)

with the function f(.) being bounded, 0 ≤ f(.) ≤ 1, along
the real axis of y, and having an expansion

f(y) = 1− ym + . . . . (11)

The terms that are of a higher exponent than m serve as
counter terms compared to Eq. (5). These requirements
guarantee that the series of integrals IN (λ) converge to
the right answer, but this does not solve yet the problem
with perturbative expansions unless we also require that
the integral

IN (λ) =

∫ ∞
0

dx e−x [f(y(x))]
N

(12)

is convergent for any complex value of u [see Eq. (9)],
which is the necessary condition for IN (λ) to be expand-
able in the convergent Taylor series in powers of u. It is
this condition which forces one to consider m > 1.

It turns out that there are infinitely many functions
corresponding to m = 4 (m = 4 is in practice the obvious
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choice), all satisfying the above-formulated requirements.
Here we present one of them which is based on Bessel
functions Jn:

f(y) = J0(2z) + 2J2(2z) +
5

3
J4(2z) , (13)

where z = (72)1/4 y and the explicit values of coefficients
follow from the requirement (11). With regards to all
conditions we find:
- For any positive u the condition 0 ≤ f(.) ≤ 1 means
that all integrals (12) are dominated by the x <∼ 1 region
and thus guaranteeing that the condition (ii) is satisfied.
- [f(y)]N is an entire function with infinite convergence
radius.
- The integrals (12) converge for any complex u since the
strongest divergence at x → ∞ (occurring at imaginary
u) is exponential with the exponent ∝

√
x and thus not

dangerous in view of the e−x factor; the condition (i) is
thus satisfied.
- the Taylor expansion of f(y) is in even powers of the
argument. Hence, the requirement of having only integer
powers of x is also satisfied since y2 = u2x.
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FIG. 1: (color online) Convergence properties of the sequence
IN (λ) with f(y) defined in Eq. (13). The result for I(λ) is
shown with circles. The convergence with N for λ = 5 is
shown in the inset.

The convergence with N of the sequence of integrals
(12) is illustrated in Fig. 1. Remarkably, N = 4 already
produces results which are accurate at the 1% level up
to λ = 5. The ultimate convergence to the exact solu-
tion is a polynomial function of N−1/2 and can be easily
extrapolated from finite N . A peculiar feature of the
arising theory is that perturbative expansion is in terms
of u which is a fractional power of λ.

In order to comply with Feynman’s diagrammatic rules
we need to study integrals over x for Taylor expansions
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FIG. 2: Plotted are integrals Ip,N =
∫
dx e−xZp,N (x) where

Zp,N is the Taylor expansion of [f(y)]N up to order xp, for
λ = 0.5. In this example N = 2 which guarantees that the
converged answer is accurate down to one percent accuracy.
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FIG. 3: Integrals Ĩp,N =
∫
dxe−xZ̃p,N (x) based on the same

series as in Fig. 2 resummed using the near-Gaussian function,
see text. The elimination of the severe sign-problem and the
radical improvement of convergence properties suggests that
polynomial size and optimization should be explored.

ZN (x) =
∑∞
k=0 x

kCk done up to order p. The im-
plications for that are shown in Fig. 2 where we plot
the final result when ZN (x) is replaced with Zp,N (x) =∑p
k=0 x

kCk. At first, the impression is that a severe sign-
problem and a very high-order expansion is the price for
obtaining a set of approximations using series with in-
finite convergence radius. When we take stronger λ or
larger N , the fluctuations that need to cancel against
each other become larger, and the minimum Taylor ex-
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pansion order increases. However, when the original se-
ries are further modified using resummation technique
based on the near-Gaussian function

Zp,N (x)→ Z̃p,N (x) =

p∑
k=0

xkCke
−ks/p, s = 2.05, (14)

we obtain results shown in Fig. 3. Amazingly, the sign
problem between the expansion orders is essentially elim-
inated and accurate results can be obtained already for
relatively small expansion orders ∼ 5, making the entire
scheme a viable solution to the regularization of diagram-
matic expansions with zero-convergence radius (increas-
ing N does not change the picture substantially).

At this point we note that series convergence for
fixed N allows us to truncate the series at some or-
der p∗(N) such that the difference between Ip∗,N =∫
dx e−xZp∗,N (x) and IN is smaller than |IN − I(λ)|.

This would account for the regularization technique in
the form (7) when the set of approximations to the ex-
ponential function is always in the form of a finite-order
polynomial in x. Clearly, there is a lot of room for opti-
mizing the form of such polynomials, and the success of
the near-Gaussian resummation, which in essence per-
forms such an optimization, proves the point—radical
improvements in efficiency are possible along these lines
even with relatively small p∗. One of such approaches
(tested for our model with quite satisfactory results) is
based on polynomials that reproduce exactly the first p∗
moments of the distribution e−x−λx

2

.
To deal with a generic non-local coupling between fields

e−λ|ψ1|2|ψ2|2 ≡ e−λx1x2 we propose to start with the fol-
lowing regularization (later on it can be further modi-
fied/optimized)

e−λx1x2 = lim
N→∞

[
g(y1)g(y2)− λx1x2

N
f(y1)f(y2)

]N
,

(15)

where yi = u′x
1/2
i , and u′ = (1/Na)1/2 with the exponent

a < 1/2. The entire functions g(y) and f(y) have to sat-
isfy criteria similar to those mentioned above: be even
functions of y, decay on the real axis, and diverge not
faster then e|y| in the complex plane. These requirements
are satisfied if f and g are based on linear combinations of
Bessel functions. We also demand that f(0) = g(0) = 1,
the Taylor series expansion of g starts from an order y2s

with as > 1, and the modulus of expression in paren-
theses is smaller than unity. This also constitutes no
problem using proper linear superpositions of Jn. The
resulting regularization is guaranteed to work and, most
importantly, it can be generalized to deal with arbitrary
interaction potentials (two-body, three-body, etc.) be-
cause the f and g functions are defined in terms of local
fields only. We had to proceed in this way instead of re-
peating the solution of the single-field problem because
the expansion in y2 ∝ |ψ1||ψ2| does not allow the dia-
grammatic technique, contrary to y2i ∝ |ψi|2.

The other important difference between Eqs. (15) and
(10) is that the y variables in Eq. (10) do not contain the
parameter λ, and the diagrammatic expansion goes thus
in integer powers of λ and u′2. We believe that with an
appropriate choice of functions it is possible to proceed
with a = 1/2 and u′ = (λ/N)1/4, just as before. This
approach has the “advantage” of being based on a single
parameter expansion. Likewise, one may apply (15) with
a < 1/2 and an λ-independent parameter u′ to deal with
the single-site regularization.

In conclusion, diagrammatic series with zero conver-
gence radius can be dealt with by approximating the
original interaction exponential with an order-p polyno-
mial in the integer powers of the original interaction and
regularizing counter-terms. The action of the regular-
ized theory is obtained by exponentiating the polynomial.
The accuracy of the approximation is controlled by the
parameter p. While the polynomial has to satisfy a num-
ber of requirements guaranteeing, in particular, that the
sequence of approximate theories approaches the origi-
nal one at p → ∞ (counterintuitively, this property re-
quires special care), there is still a continuum of possible
choices, with some characteristic examples tested on the
basis of zero-dimensional |ψ|4 model. We believe that
the outlined approach—especially in the context of Di-
agrammatic Monte Carlo—opens up an opportunity to
utilize Feynman’s diagrams as a generic tool to address
strongly correlated classical- and quantum-field systems.
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the Swiss National Science foundation, the National Sci-
ence Foundation grant PHY-0653183, and by a grant
from the Army Research Office with funding from the
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