We discuss the finite-temperature phase diagram in the three-dimensional
Bose-Hubbard (BH) model in the strong correlation regime, relevant for
Bose-Einstein condensates in optical lattices, by employing a quantum rotor
approach. In systems with strong on site repulsive interactions, the rotor U(1)
phase variable dual to the local boson density emerges as an important
collective field. After establishing the connection between the rotor
construction and the the on--site interaction in the BH model the robust
effective action formalism is developed which allows us to study the superfluid
phase transition in various temperature--interaction regimes