
Strathprints Institutional Repository

Duncan, H. and Bundy, A. and Levine, J. and Storkey, A. and Pollet, M. (2004) The use of data-
mining for the automatic formation of tactics. [Proceedings Paper]

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

IJCAR 2004
Second International Joint Conference on Automated Reasoning

University College Cork, Cork, Ireland

Workshop Programme

Computer-Supported Mathematical
Theory Development

Christoph Benzmüller and Wolfgang Windsteiger
(Chairs)

WS 7 – July 5

Contents

Editorial . 3
Christoph Benzmüller, Wolfgang Windsteiger

Invited Talk: Formalizing Abstract Mathematics: Issues and Progress 5
Larry C. Paulson

Towards a Generic Management of Change 7
Dieter Hutter

An Environment for Building Mathematical Knowledge Libraries 19
Florina Piroi and Bruno Buchberger

Integrated Proof Transformation Services . 31
Jürgen Zimmer, Andreas Meier, Geoff Sutcliffe, and Yuan Zhang

English Summaries of Mathematical Proofs 49
Marianthi Alexoudi, Claus Zinn, and Alan Bundy

The Use of Data-Mining for the Automatic Formation of Tactics 61
Hazel Duncan, Alan Bundy, John Levine, Amos Storkey, and Martin Pollet

CORE and HULL Constructors in Gödel’s Class Theory 73
Johan G. F. Belinfante and Tiffany D. Goble

Classification of Quasigroups by Random Walk on Torus 91
Smile Markovski, Danilo Gligoroski and Jasen Markovski

1

Computer-Supported Mathematical Theory Development’04 3

Editorial

This report contains the proceedings of the IJCAR 2004 Workshop 7 on Computer-
Supported Mathematical Theory Development, held July 5, 2004 in Cork, Ireland.

Mathematical reasoning tools, such as computer algebra systems, theorem provers,
decision procedures, etc., are increasingly employed in mathematics and engineering.
Also large repositories of formalized mathematics are currently emerging. It is never-
theless the case that the actual pragmatics of mathematics is still to be characterized as
mainly pen and paper based. One reason is that still no convincing systems exist that
provide a sufficiently integrated support for the usual work phases of a mathematician,
e.g. from initial conception and organization of ideas up to the final publication in a
journal article.

A special focus of the workshop is on computer-support for the development of
mathematical theories. Mathematical theory development describes the formulation,
organization, manipulation, and maintenance of mathematical content. Support for
adequate interaction with the (human) mathematician is mandatory in this context.

Thus, computer-supported mathematical theory development comprises:

• the formulation of mathematical statements in a computer-processable form,

• computer-support in processing mathematical content; depending on the content,
this can mean “proving”, “computing”, “solving”, “visualizing”, “checking”, “sim-
ulating”, “conjecturing”, etc.

• the systematic organization and maintenance in and the powerful retrieval of math-
ematical knowledge from computer-accessible media,

• the management of change in the development of mathematical knowledge,

• the publication and presentation of mathematical material using new and/or well-
established computer-based publication or presentation formats, and

• the interaction between the human mathematician and the supporting software.

The workshop addresses the design and implementation of frameworks aiming at
integrated support for the entire process of theory development. Clearly, there is still a
big gap between the systems envisioned and the systems already available and this gap
has to be overcome in the future. Therefore also partial solutions are welcome if their
relevance for the bigger vision can be illustrated.

4 Benzmüller, Windsteiger: Editorial

The workshop’s program committee:

Michael Beeson, San Jose, USA Dieter Hutter, Saarbrücken, Germany
Bruno Buchberger, Linz, Austria Christoph Kreitz, Potsdam, Germany
Alan Bundy, Edinburgh, Scotland Volker Sorge, Birmingham, England
Simon Colton, London, England Andrzej Trybulec, Bialystok, Poland
William Farmer, Hamilton, Canada Freek Wiedijk, Nijmegen, The Netherlands

The organizers want to thank all members of the program committee for their valu-
able help during the refereeing process so that we managed to get along with the tight
schedule.

We also want to thank the IJCAR’04 Workshop Chair, Peter Baumgartner, for his
help in all organisational matters.

The organizers are grateful to Larry Paulson for agreeing to give an invited talk on
Formalizing Abstract Mathematics: Issues and Progress. Finally, we thank CoLogNET
and the European Union CALCULEMUS RTN for supporting our workshop.

June 2004 Christoph Benzmüller and Wolfgang Windsteiger

Computer-Supported Mathematical Theory Development’04 5

Formalizing Abstract Mathematics: Issues and Progress

Larry C. Paulson
University of Cambridge, UK

Invited Talk

Abstract

Many well-known theorems in mathematics have been formalized using a variety
of tools and formal systems. Despite this success, some kinds of material remain
difficult to formalize, especially if our aim is to develop an ever-growing book of
mathematics rather than stopping once a certain theorem has been proved. Algebra,
with its numerous abstract concepts that are refined and combined in countless
ways, is particularly difficult to formalize, but other branches of mathematics, such
as topology, present similar difficulties. The speaker will describe recent progress
in this area using Isabelle’s locale construct.

Computer-Supported Mathematical Theory Development’04 7

Towards a Generic Management of Change

Dieter Hutter
German Research Center for Artificial Intelligence

(DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

e-mail: hutter@dfki.de

Abstract

In this paper we sketch the outline and the underlying theoretical framework for a
general repository to maintain mathematical or logic-based documents while keep-
ing track of the various semantical dependencies between different parts of various
types of documents (documentations, specifications, proofs, etc). The sketched ap-
proach is a generalization of the notion of development graphs (as implemented
in the MAYA-system) used to maintain formal software developments. We iso-
late maintenance mechanisms that solely depend on the structuring of objects and
their relations. These mechanisms define the core of the general repository while
mechanisms that are specific to individual semantics are sourced out to individual
plug-ins attached to the general system.

1 Introduction

It is well-known that the logical formalization of software systems is error-prone. Since
even the verification of small-sized industrial developments requires several person months,
specification errors revealed in late verification phases pose an incalculable risk for the
overall project costs. An evolutionary formal development approach is absolutely in-
dispensable. In all applications so far, development steps turned out to be flawed and
errors had to be corrected. The search for formally correct software and the correspond-
ing proofs is more like a formal reflection on partial developments rather than just a
way to assure and prove more or less evident facts. In the same way mathematical
knowledge has to be constantly revised, modified and enlarged. Discovering mathemati-
cal knowledge is a continuous interplay between (re-)specifying mathematical structures
and proving proposed properties about these created structures.

In this paper we aim at a repository to maintain all sorts of dependencies between
various parts of a formal development. The main goal of such a logic-based repository is
to ease the development of mathematical or logic based knowledge consisting of entities
such as axioms, definitions, theorems, proofs or even programs or informal documen-
tations. As the development of a software project or of mathematical knowledge is
distributed, also the repository has to support distributed developments. A CVS-like
infrastructure [2] is necessary to determine the differences between two versions, to cal-
culate the necessary changes to update a local repository to the current state, and to
integrate two rival developments into a merged variant. It maintains the various depen-
dencies between individual mathematical entities and keeps the database always in a

8 Hutter: Towards a Generic Management of Change

consistent state, calculating the effects of changes in the database and using logic based
tools to adjust existing proofs once the underlying theory has changed. We aim at a
repository that encompasses a management of change maintaining these dependencies
and suggesting necessary adjustments after changing mathematical objects.

Mathematical proofs are the central entities in the logic based repository but they are
also the most fragile ones. Changes in the repository will always endanger the stored
proofs as assumptions used in these proofs may have changed. While the repository
has to recognize those situations in which changes did not affect the assumptions of
a proof, there is a need for techniques to support the reuse of proofs if parts of the
assumptions have been changed, because, for instance, some theorems and proofs have
been transferred from one theory to another or theories have been merged or split.
We aim at a machine assistance to recreate a proof corpus following a change in the
axioms/definitions. The re-creation would be by a combination of: certifying which
proofs are unaffected by the change, adapting other proofs by analogy into new proofs,
simplifying proofs when possible, and user interaction to complete any residual partial
proofs.

2 MAYA

Within the last years we developed a stand-alone repository, Maya, supporting the
management of change in the domain of algebraic specifications. The Maya-system
[5, 1] allows users to specify and verify developments in a structured manner, incorpo-
rates a uniform mechanism for verification in-the-large to exploit the structure of the
specification, and maintains the verification work already done when changing the spec-
ification. Maya relies on development graphs as a uniform representation of structured
specifications, which enables the use of various (structured) specification languages like
Casl [3, 9] to formalize the software development. While unstructured specifications
are solely represented as a signature together with a set of logical formulas, the struc-
turing operations of the specification languages (such as then, and, or with in Casl)
are translated into the structure of a development graph. Each node of this graph cor-
responds to a theory. The axiomatization of this theory is split into a local part which
is attached to the node as a set of higher-order formulas and into global parts, denoted
by ingoing definition links, which import the axiomatization of other nodes via some
consequence morphisms. While a so-called local link imports only the local part of the
axiomatization of the source node of a link, global links are used to import the entire
axiomatization of a source node (including all the imported axiomatizations of other
nodes). In the same way local and global theorem links are used to postulate relations
between nodes (see [5] for details). As theories correspond to subgraphs within the de-
velopment graph, a relation between different theories, represented by a global theorem
link, corresponds to a relation between two subgraphs. Each change in these subgraphs
can affect this relation and would invalidate previous proofs of this relation. Therefore,
Maya decomposes relations between different theories into individual relations between
the local axiomatization of a node and a theory (denoted by a local theorem link). Each
relation decomposes again into a set of proof obligations postulating that each local ax-
iom of the source node is a theorem in the target theory with respect to the morphism

Computer-Supported Mathematical Theory Development’04 9

attached to the link.
To this end Maya provides a generic interface to plug in additional parsers for

the support of other specification languages. Moreover, Maya allows the integration
of different theorem provers to deal with the actual proof obligations arising from the
specification, i.e. to perform verification in-the-small.

3 A General Approach — The System Design

When developing repositories for various purposes, like e.g. formal developments (MAYA
[1]) or course material for Universities (MMISS [7]) it turns out that maintaining seman-
tic dependencies between all the various documents is one of the main challenges. To
support a distributed development, the repository should compute differences between
different branches of a development and should be able to merge different branches into
a common one. However, in contrast to CVS, the repository should be aware of semantic
dependencies and notify conflicts if such semantic dependencies are violated when ma-
nipulating the development. However, the vast number of such dependencies occurring
in practical examples prohibits the brute-force control of each individual dependency
each time some document has been edited. Tracking dependencies in developments
requires a structuring of dependencies. Typically, there are different sources for such
dependencies:

On the one hand the semantics of (structured) objects depends on the semantics
of objects used for their definition (axiomatic dependencies). While there is no way
to scrutinize changes of axiomatic dependencies in case of intentional (or purposeful)
changes of the development, there is a need to inspect axiomatic dependencies in case
of mechanical changes as they occur during the (automatic) merge of two branches.
Section 4 will discuss this issue in more detail.

On the other hand properties between (structured) objects can be postulated and
proven within a development. Similar to the objects under consideration, the proofs
of properties about such objects are also structured. Hence, such a proof depends on
(or decomposes into) properties of sub-objects which gives rise to deduced dependencies
between different properties. Changing the development may render proofs invalid since
either some basic property does no longer hold or the way the problem was decomposed is
no longer appropriate. The decomposition of proof obligations according to the structure
of the objects allows us to reuse already established properties of those sub-objects that
have not been changed. Section 5 illustrates a generic mechanism that makes use of this
observation to minimize the effect of changes to proofs of properties.

4 Distributed Developments

The development of mathematical knowledge bases or formal (software) developments
is usually distributed over various developers working on different parts of the actual
development. As a consequence there are various versions of the development at different
places differing in the fields of activity of the individual mathematicians or engineers. At
some points of the development process these concurrent progresses have to be merged
into a common document.

10 Hutter: Towards a Generic Management of Change

Distributed Da ta ba ses
CVS-l i k e : Diff, P a t c h , M a t c h

o n X M L -l ik e d o c s

P ro o f M a in ten a n c e

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
St r u c t u r a l

D e c o m p o s i t i o n
of pr oof ob l iga tions

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
P a r s e r

(e . g. D T D)

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
Se m a n t i c a n a l y s i s
-> d e pe nd e nc ie s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
D e c o m p o s i t i o n
of d e pe nd e nc ie s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie sP r o v e r s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
D o c u m e n t
R e t r i e v a l

Distributed Da ta ba ses
CVS-l i k e : Diff, P a t c h , M a t c h

o n X M L -l ik e d o c s

P ro o f M a in ten a n c e

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
St r u c t u r a l

D e c o m p o s i t i o n
of pr oof ob l iga tions

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
St r u c t u r a l

D e c o m p o s i t i o n
of pr oof ob l iga tions

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
P a r s e r

(e . g. D T D)
Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
P a r s e r

(e . g. D T D)

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
Se m a n t i c a n a l y s i s
-> d e pe nd e nc ie s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
Se m a n t i c a n a l y s i s
-> d e pe nd e nc ie s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
D e c o m p o s i t i o n
of d e pe nd e nc ie s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
D e c o m p o s i t i o n
of d e pe nd e nc ie s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie sP r o v e r sComputing
d e pe nd e nc ie sComputing

d e pe nd e nc ie sP r o v e r s

Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
D o c u m e n t
R e t r i e v a l
Computing
d e pe nd e nc ie sComputing

d e pe nd e nc ie s
D o c u m e n t
R e t r i e v a l

Figure 3.1: Distributed Development according CVS

CVS (Concurrent Versions Systems) [2] (http://www.cvshome.org) has been well-
known for supporting a concurrent development of text documents. The idea of CVS
is to keep all documents in a common repository. In order to work on documents, a
user has to create a local copy of the repository. Independently of other developers
she can change the documents in the local copy of the repository in an arbitrary way.
Eventually she decides to make her changes available to all other users, which means
that she wants to integrate her changes into the common repository. If the actual
version of the common repository is still the version she used to start her modifications
then CVS can simply replay all the changes the user made locally also in the common
repository. However, suppose there is another user who changed parts of the document
and committed her changes to the common repository first. In this case the common
repository is not identical to the starting point of the first user and CVS has to merge
the changes of both users into a common development. CVS considers documents as
sequences of text lines. The change of a document is decomposed to changes of text
lines. A so-called conflict occurs if the same text line has been independently altered
(changed or removed) by both users in different ways. In this case the user has to decide
which version she will prefer. In all other cases the newest version of the text line will
be used or removed respectively, if one user removed the line in her version.

While text-lines might be appropriate to structure pure text documents, this ap-
proach fails completely in logic-based documents for the following reasons: First, line-
feeds do not correspond to the intended structure of logic-based document which are
usually described by a term-based language. A single text line may contain two inde-
pendent terms which could be changed independently. Moreover, a single term could
be spread over many text lines and undiscovered “semantic” conflicts may occur if two
users change different text lines that are both part of the description of a single term.
Second, there are usually many “semantic” dependencies between different parts of the
document. Changing the arity of a signature symbol in a document typically requires
to change its arity in all the occurrences of the symbol.

In the following, we reuse the general paradigm of CVS consisting of computing

Computer-Supported Mathematical Theory Development’04 11

Re
po

sit
or

y

Dev Dev

commit
Dev1 Dev2

u p d a te

commit

u p d a te

Dev3 Dev3
u p d a te

M er g e

u p d a te

Re
po

sit
or

y

Dev Dev

commit
Dev1 Dev2

u p d a te

commit

u p d a te

Dev3 Dev3
u p d a te

M er g e

u p d a te

Figure 4.2: Distributed Development According CVS

differences or patches and merging different threads of developments by automatically
joining independent changes while asking the user to resolve competing changes. How-
ever, instead of using the physical structure of documents as a sequence of text lines
we will use more semantically oriented structures in a first phase. In the second phase
we add semantical dependencies between different parts of a document to detect con-
flicts between different versions of a document that result from changing different but
semantically still dependent parts of a document by different users.

Languages like XML have been advertised as a common standard to formulate struc-
tured knowledge. Within this approach we follow this idea and assume documents to
be described in an XML-like syntax. Therefore documents are usually trees, the nodes
of which are attached with information. For instance, terms may be represented in
XML-like languages (e.g. MathML http://www.w3.org/Math/) basically by their cor-
responding term tree. Nodes are annotated with signature symbols and the subtrees of
the node refer to the arguments of the symbol. We generalize this concept and allow also
structure sharing which results in the notion of acyclic directed graphs as the general
structure underlying the documents under consideration1:

Definition 1 A structured document O = 〈N ,L〉 is an acyclic directed graph con-
sisting of nodes N and containment links L. O is the set of all structured documents.
A syntax parser φ is a predicate on O and {O ∈ O | φ(O) holds} is the set of structured
documents admissible wrt. φ.

The notion of admissibility in Definition 1 refers to syntactical restrictions of the
documents which are typically covered, for instance in XML, by using DTDs or XML-
Schemas. In the following, we interprete this notion of admissibility as additional re-
strictions to acyclic directed graphs in order to denote well-formed documents. However,
our proposed approach is orthogonal to the definition of admissibility and therefore we
will not explore its internal representations.

1XML already provides some notion of structure sharing by the notions of ID and IDREF.

12 Hutter: Towards a Generic Management of Change

Let N,M ∈ N and L be a set of links. Then we write N →∗
L

M iff N = M , or there
is a N ′ ∈ N such that N → N ′ ∈ L and N ′ →∗

L
M . Let O = 〈N ,L〉 and N ∈ N . Then

ON = 〈N ′,L′〉 is the smallest graph with N ′ being those nodes of N from which N is
reachable and L′ is the subset of links in L which are on a path between a node of N ′

and N .
We assume that individual nodes or links may contain individual content. Nodes

and links with different content are different. This means later-on that changing the
content of a node is formally an insertion of a new node to the graph inheriting all links
from the old node. Similar remarks hold for links.

In order to implement a CVS-like repository we have to provide appropriate defini-
tions

• to compute the differences of two structured documents,

• to operationalize this description as a patch for transforming one structured doc-
ument into another, and

• to merge two different patches of a common structured document to a common
patch including as much as possible of both patches.

Differences between two structured documents can be easily described by the differ-
ences of their corresponding parts, i.e. set of nodes and sets of links. Then patches
are sequences of insertions or deletions of nodes or links. Notice, that this abstract
mathematical view of documents as structured documents hides some practical issues
of comparing graphs which are related to the question on when two nodes of different
documents or patches are considered to be equal (or identical). We argue that introduc-
ing unique identifiers for nodes will allow us to identify corresponding nodes in different
versions of a document (see [4]).

Defining the difference between two structured documents by O1 \ O2 := 〈N1 \
N2,L1 \ L2〉

2, etc, we can define the merge of two structured documents wrt. to a
common predecessor document formally:

Definition 2 Let O, O1, and O2 be three structured documents. Then, the merge of O1

and O2 wrt. a common predecessor O is defined by

merge(O1, O2, O) := (O ∩O1 ∩O2) ∪ (O1 \O) ∪ (O2 \ O)

It is easy to see that merge(O1, O2, O) = (O1 \ (O \O2)) ∪ (O2 \ (O \ O1)).

Definition 3 A merge merge(O1, O2, O) is admissible iff merge(O1, O2, O) is an ad-
missible object.

This admissibility check refers again to the syntactical restrictions of structured docu-
ments given, for instance, in a DTD or an XML-Schema. In case we use unique identifiers
to detect corresponding nodes in different versions we also have to check the uniqueness
of these identifiers in order to guarantee that the merge does not contain two nodes

2Notice that the difference of two structured documents is in general not a structured document since
there might be links in L1 \ L2 which refer to nodes that are not member of N1 \ N2. Here, we use this
notion simply as a pair of sets.

Computer-Supported Mathematical Theory Development’04 13

containing competing information. In this case we have a conflict arising by the change
of the same node by two developers. Thus, the user has to decide which of these nodes
has to be selected for the merged version.

4.1 Semantic Dependencies

Given a structured document, which is usually a syntactical object, its parsing will
reveal an internal semantic structure. Partly this structure can be explicitly given by
syntactical means. Consider for instance the example given in Figure 4.3.3 We specify
lists of natural numbers List of Nats with the help of the specification of Nats which is
syntactically indicated by the reference Imports: Nats. Looking at the use of Nats in
List of Nats more closely, we recognize that symbols like ≤, 0 or succ are used which
are defined in Nats which gives rise for various dependencies between the definitions
and the uses of these symbols.

Nats
Spec N a t =
f r ee t y pe N a t : : = 0 | s u cc(N a t)

O p: ≤ : N a t , N a t → B o o l ea n
∀x : n a t 0 ≤ s u cc(x) . . .

O p: pl u s : N a t → N a t
∀x : n a t pl u s (0 , x) = x . . .

L i st o f Nats
Spec L i s t =
f r ee t y pe L i s t : : = n i l | co n s (N a t , L I ST)

O p: s o r t ed : L i s t → B o o l ea n
∀x , y : n a t , z : L i s t

s o r t ed (co n s (x , co n s (y , z))) → x ≤ y . . .

O p: r ev er s e : L i s t → L i s t
r ev er s e(n i l) = n i l . . .

Imports: Nats

Nats
Spec N a t =
f r ee t y pe N a t : : = 0 | s u cc(N a t)

O p: ≤ : N a t , N a t → B o o l ea n
∀x : n a t 0 ≤ s u cc(x) . . .

O p: pl u s : N a t → N a t
∀x : n a t pl u s (0 , x) = x . . .

L i st o f Nats
Spec L i s t =
f r ee t y pe L i s t : : = n i l | co n s (N a t , L I ST)

O p: s o r t ed : L i s t → B o o l ea n
∀x , y : n a t , z : L i s t

s o r t ed (co n s (x , co n s (y , z))) → x ≤ y . . .

O p: r ev er s e : L i s t → L i s t
r ev er s e(n i l) = n i l . . .

Imports: Nats

Figure 4.3: Semantic Dependencies in Specifications

Thus, we extend structured documents by a new kind of link which represents the
semantic dependencies between (different) objects. The implicit understanding of these
links is that the user is not free to define them arbitrarily but they are computable in a
uniform way from a corresponding structured document. Furthermore we are interested
to localize the necessary part of the object that have to be considered when computing
the semantic dependencies between two individual subgraphs.

As mentioned before, semantic dependencies occur on various levels of the struc-
tured document (considered as a syntactical representation of a structured semantical
object). For instance, there are dependencies between theories which are reflected by the
dependencies of signature symbols defined in one theory but used in another. Hence, we
will introduce a refinement mapping that allows us to decompose a dependency between
structured documents to individual dependencies of their sub-objects.

Definition 4 An extended structured document O is a tuple 〈N ,L,U ,R〉 such that

3In this simple example, the boxes denote individual nodes, the nesting of the boxes represents the
containment links L while semantic dependencies are given by links between different boxes.

14 Hutter: Towards a Generic Management of Change

〈N ,L〉 is a structured document, U is a set of dependency links between nodes in N
and R is a mapping from elements of U to subsets of U such that

• 〈N ,L ∪ U〉 is an acyclic graph.

• for all N →M ∈ U with R(N →M) = {N1 →M1, . . . Nn →Mn} ⊆ U Ni →
∗
L

N ,
and Mi →

∗
L

M holds.

The first condition of the definition guarantees that there are no cyclic dependencies
considering the existing containment relation. The second condition restricts the way
a dependency can be decomposed. In principle the decomposition of a dependency of
two structured documents should result in dependencies of individual sub-objects of the
considered structured documents.

Definition 5 A semantic analyzer is a partial mapping ϕ of structured documents
to extended structured documents such that for all N , L for which ϕ is defined there are
U and R with ϕ(〈N ,L〉) = 〈N ,L,U ,R〉.

A set of dependency links represents the semantic dependencies between different
parts of a structured document. Intuitively, a merge of two structured documents causes
a conflict if there would be a dependency between two objects which stem from different
branches. Since in this case both objects are manipulated separately by different de-
velopers, none of them has anticipated the resulting interplay between both structured
documents.

Hence, analyzing the merged structured document and inspecting the set of arising
dependency links U ′ we demand that for each dependency link either the same link
connecting the same structured documents existed in one of the original structured
documents or that the link is decomposable, i.e. there is a refinement that decomposes
the link l to a set of more fine-grained dependency links R(l) in U ′ which all satisfy this
condition.

As an example consider two developers D1 and D2 working simultaneously on the
specification given in Figure 4.3. While developer D1 detects a specification error inside
the definition of reverse and corrects its definition in List of Nats, developer D2

exchanges the definition of the predicate < by some definition for > and adjusts the
definition of the predicate sorted accordingly. When we merge the branches of both
developers we obtain in particular an emerging version of List of Nats which did not
exist in any of the two branches. This potential conflict can be resolved if we refine
the dependency between Nats and List of Nats to dependencies between their sub-
objects. Since the definition of reverse is independent of the specification of Nat and
sorted, the changes made by the two developers operate on independent subgraphs.

Using the following abbreviations ϕ(O) = 〈N ,L,U ,R〉, ϕ(O ′) = 〈N ′,L′,U ′,R′〉, etc,
we define:

Definition 6 Let O1, O2, O be structured documents, ϕ be a semantic analyzer, and
O′ = merge(O1, O2, O) with ϕ(O′) = 〈N ′,L′,U ′,R′〉. Then a link l : N → M ∈ U ′ is
valid wrt O1, O2, O and ϕ iff

• O′
N , O′

M are subgraphs of O1 and l ∈ U1,

Computer-Supported Mathematical Theory Development’04 15

• O′
N , O′

M are subgraphs of O2 and l ∈ U2, or

• The set R′(l) is not empty and all dependency links l′ ∈ R′(l) are valid wrt.
O1, O2, O and ϕ.

Definition 7 Let O1, O2, O be structured documents, ϕ be a semantic analyzer, and
O′ = merge(O1, O2, O) with ϕ(O′) = 〈N ′,L′,U ′,R′〉. Then, O′ is valid wrt. wrt
O1, O2, O and ϕ iff all l ∈ U ′ are valid wrt. O1, O2, O and ϕ.

Structuring dependency links in a hierarchical way, makes it feasible to track de-
pendencies in an efficient way. The idea is to inspect the validity of dependency links
along the containment-relations of the structured documents. First, we analyze all de-
pendency links l which are not part of the refinement of any other dependency link.
Links in R(l) are only inspected if the first two cases in Definition 6 do not hold. To
implement such an approach we have to demand additional requirements to the seman-
tical analyzer. The essential feature is the property that the analyzer always creates the
same refinement for a link l if the connected structured documents have not changed.
However, there are cases in which specification languages violate this property. The rea-
son is that a so-called global environment is used to assign the occurrence of a symbol
to its definition. If there are multiple definitions of the same symbol then a change of
the environment might cause different assignments of unchanged objects. For example,
suppose that List of Nats would import another theory and we would add a definition
of ≤ to this theory. This new definition may hide the definition of ≤ in Nats and thus
eliminate the dependency link between that definition and the definition of sorted. It
is ongoing work to find appropriate properties of the semantic analyzer also for these
situations which will allow us to avoid unnecessary checks of dependency links.

5 Maintaining Structured Properties

Inspecting the ideas of MAYA we discovered that most of the work related to the
management of change does not require a deep knowledge of the semantics of the un-
derlying specification languages. Instead the management of change solely operates on
the structure of the objects under consideration and on how proposed properties can
be decomposed to properties of their sub-objects. To cope with postulated or verified
properties we introduce another type of links P denoting (derived) properties between
structured documents. Similar to the refinement (or decomposition) of dependency links
in U we like to decompose properties (i.e. links in P) to corresponding properties of
involved sub-objects. Therefore we introduce a mapping D which is a partial function
decomposing links in P to sets of links in P.

Consider the development in Figure 5.4. We have specified independently List of

Nats and Generic List and would now like to prove that List of Nats includes4

Generic List (denoted by link No. 0) wrt. some signature morphism (omitted here
for sake of simplicity). The semantics of development graphs allow us to decompose
this proof obligation into various other obligations (denoted by all the links annotated
with 1): we have to prove that all axioms of Generic List are theorems in List of

4in terms of theory inclusion.

16 Hutter: Towards a Generic Management of Change

Elem
�����������
	 �������	 ������������	 �����

L i s t o f N a t s�������� !#"%$
&(' ���)" *���+�� !#"%� � $,�� 	.- / / /
�����!0� ' "1��23���� !#"4�5������	 �����
6�78� *�� ����"9��:�� �� !#"
!0� ' ";��2�< �=����!0< 78��=����!0< *���:�> > >

����� ' �=?�� ' !0�@���� !#"4���� !#"
' �=?�� ' !0��< �� 	 >A$,�� 	�/ / /
B;CEDAF)GIH
J.K%L)M8H
J

G en er i c L i s t�������� !#"4$
&I' ���)" *���+�� !#"4� � $,�� 	.- / / /
�N����!0� ' "1��23���
 !#"%�5������	 �����
6N7.� *�� ����"9�:�� �� !#"
!0� ' ";��2�< �=����!0< 7.���=����!0< *���:�> > >

����� ' �0?�� ' !0�+���� !#"%���� !O"
' �=?�� ' !0��< �� 	 >P$Q�� 	�/ / /
B CRDAF�GIH�J8K%S8T U%C

N a t s
������V.��"4$
&(' ���)" *���+VW��"P� � $YX4-!
Z�=�=< VW��" >
����������V.��"I��VW��"4�5�����	 �
���
6�7.� ���".X3�Q!
Z�=�=< 7�>A/ / /

��������	 Z�!��VW��"4�5V.��"
6�78� ���"P��	 Z�!0< X.��7�>A$[73/ / /

0

1

2

3

1
1

1

Elem
�����������
	 �������	 ������������	 �����

L i s t o f N a t s�������� !#"%$
&(' ���)" *���+�� !#"%� � $,�� 	.- / / /
�����!0� ' "1��23���� !#"4�5������	 �����
6�78� *�� ����"9��:�� �� !#"
!0� ' ";��2�< �=����!0< 78��=����!0< *���:�> > >

����� ' �=?�� ' !0�@���� !#"4���� !#"
' �=?�� ' !0��< �� 	 >A$,�� 	�/ / /
B;CEDAF)GIH
J.K%L)M8H
J

G en er i c L i s t�������� !#"4$
&I' ���)" *���+�� !#"4� � $,�� 	.- / / /
�N����!0� ' "1��23���
 !#"%�5������	 �����
6N7.� *�� ����"9�:�� �� !#"
!0� ' ";��2�< �=����!0< 7.���=����!0< *���:�> > >

����� ' �0?�� ' !0�+���� !#"%���� !O"
' �=?�� ' !0��< �� 	 >P$Q�� 	�/ / /
B CRDAF�GIH�J8K%S8T U%C

N a t s
������V.��"4$
&(' ���)" *���+VW��"P� � $YX4-!
Z�=�=< VW��" >
����������V.��"I��VW��"4�5�����	 �
���
6�7.� ���".X3�Q!
Z�=�=< 7�>A/ / /

��������	 Z�!��VW��"4�5V.��"
6�78� ���"P��	 Z�!0< X.��7�>A$[73/ / /

0

1

2

3

1
1

1

Figure 5.4: Decomposition of Proofs

Nats and that Elem is included in List of Nats. The latter proof obligation can be
decomposed again into the theory inclusion property between Elem and Nats (indicated
by link No. 2) and which itself is decomposed into the property of the axiom of Elem
being a theorem in Nats (link No. 3).

Decomposition of proof obligations minimizes the effects of changing parts of the de-
velopment locally. If we only change the axiom of Elem then we only have to reestablish
the proof that this axiom (mapped via some signature morphism) is a theorem in Nats.
Without decomposition we would have to prove the property that Generic List is in-
cluded in List of Nats from scratch. If we change Generic List by adding another
theory then we have to redo the decomposition of link 0 resulting in an additional proof
obligation that the new theory is also included in List of Nats. All other proofs are
not affected.

The ability to decompose properties along the structure of the concerned objects
allows us to localize the effects of changes. A property between structured objects
(theories) is decomposed (according to some decomposition rules) to properties between
their sub-objects (local axioms). Typically these properties between structured objects
are independent of the environment in which these objects might occur. As long as the
concerned structured objects are unchanged any change of the overall development will
not inflict the already proven or postulated properties between these objects. Hence,
the result of decomposing a link in P only depends on that link and the subgraphs
connected by the link.

The crucial observation is that in order to compute these decompositions we only
need shallow information about involved structured documents. To decompose link 0 in
our example we do not have to inspect the internal structure of the axioms of List of

Computer-Supported Mathematical Theory Development’04 17

Nats, nor do we have to know anything about the internal structure of List of Nats.
This means that the computed decomposition is still valid when we change an individual
axiom of Elem or import an additional theory to List of Nats. Hence, in the proposed
system each decomposition is associated with a subset of nodes and links which are used
to justify the decomposition. Only if this particular part of graph is changed then we
have to recompute the decomposition and adjust the graph accordingly.

The system itself does not require any knowledge about how to compute the de-
composition. This can be done by an external procedure which – given a specific proof
obligation – will return the new set of proof obligations (encoded again as links in the
extended structured document) and the set of nodes used to compute the decomposition.
The system itself will store this information and will retain the computed decomposition
as long as the used set of nodes indicated by the procedure does not change.

6 Conclusion

We sketched the outline and some basic notions of a generic tool to support the dis-
tributed development of structured documents including postulated or verified relations
among them. The key observation is that the mechanisms used to realize a distributed
management of change mainly depend on the structuring mechanisms (rather than on
the individual semantics of the basic objects) used within the applications. In order to
cope with the growing complexity when dealing with realistic examples we introduced
various notions of decompositions which allow for a hierarchical management of change.

The ultimate goal is to support generic structuring mechanisms as they occur in
various domains by developing a system supporting these mechanisms while outsourcing
application specific parts into modules attachable to the system. This would allow us to
instantiate such a system for various purposes, like for instance in formal methods (cf.
MAYA [1]), program development, or even maintaining course materials (cf. MMISS
[7]).

Bibliography

[1] S. Autexier, D. Hutter, T. Mossakowski and A. Schairer. The Development
Graph Manager MAYA. In Proceedings 9th International Conference on Alge-
braic Methodology And Software Technology, AMAST2002. Springer, LNCS 2422,
2002

[2] B. Berliner. CVS II: Parallelizing Software Development. In Proceedings of the
USENIX Winter 1990 Technical Conference, USENIX Association, 1990

[3] M. Bidoit and P.D¿ Mosses. CASL User Manual: Introduction to Using the Com-
mon Algebraic Specification Language. Springer, LNCS 2900, 2004

[4] P. Buneman, S. Khanna, K. Tajima, W.C. Tan. Archiving Scientific Data. In
Proceedings of ACM SIGMOD International Conference on Management of Data,
2002

18 Hutter: Towards a Generic Management of Change

[5] D. Hutter. Management of Change in Verification Systems. In Proceedings 15th
IEEE International Conference on Automated Software Engineering, ASE-2000,
IEEE Computer Society, 2000.

[6] M. Kohlhase and R. Anghelache. Towards Collaborative Content Management and
Version Control. Proceedings of the 2. International Conference on Mathematical
Knowledge Management, MKM 2003, Springer, LNCS 2594, 2003

[7] B. Krieg-Brückner, D. Hutter, C. Lüth, E. Melis, A. Pötsch-Heffter,

M. Roggenbach, J. Smaus and M. Wirsing. Towards MultiMedia Instruction in
Safe and Secure Systems. In: Recent Trends in Algebraic Development Techniques,
(WADT-02). Springer, LNCS 2755, 2003

[8] B. Krieg-Brückner and J. Peleska and E.-R. Olderog and A. Baer. The Uni-
ForM Workbench, a Universal Development Environment for Formal Methods. In
J. M. Wing and J. Woodcock and J. Davies (eds): Proceeding of FM’99 - Formal
Methods. Springer, LNCS 1708, 1999

[9] T. Mossakowski and P. Hoffman and S. Autexier and D. Hutter. Part IV: CASL
Logic. In B. Krieg-Brückner and P. Mosses (eds): The CASL Reference Manual,
Springer, LNCS 2960, 2004

Computer-Supported Mathematical Theory Development’04 19

An Environment for Building

Mathematical Knowledge Libraries

Florina Piroi1 Bruno Buchberger

Research Institute For Symbolic Computation,
4232 Hagenberg, Austria

{florina.piroi, bruno.buchberger}@risc.uni-linz.ac.at

Abstract

In this paper we identify the organizational problems of Mathematical Knowledge
Management and describe tools that address one of these problems, namely, the
additional annotation of formalized knowledge. We describe, then, how the tools
are realized in the frame of the Theorema system.

1 Introduction

The aim of the new research area ”Mathematical Knowledge Management” (MKM) is
the computer-support (partial or full automation) of all phases of the exploration of
mathematical theories:

• invention of mathematical concepts,
• invention and verification (proof) of mathematical propositions,
• invention of problems,
• invention and verification (correctness proofs) of algorithms that solve problems,

and the structured storage of concepts, propositions, problems, and algorithms in such
a way that, later, they can be easily accessed, used and applied.

MKM in this broad sense is an essentially logical activity: All formulae (axioms and
definitions for concepts, propositions, problems, and algorithms) must be available in
the coherent frame of a logical system, e.g. some version of predicate logic and the
main operation of MKM on these formulae is essentially formal reasoning (in particular
formal proving).

The Theorema system is one of the systems whose emphasis is on this logic aspect
of MKM, which we think is the fundamental aspect of future MKM. Some papers on
the logical aspects of MKM within Theorema are [12, 5]. The question of computer-
supported invention of mathematical knowledge within Theorema is treated in [9], the
question of computer-supported algorithm synthesis within Theorema is treated in [6, 8]
and [10].

On the surface of MKM, however, we are faced also with many additional organiza-
tional problems, which are important for the practical success of MKM:

1partially supported by the RISC PhD scholarship program of the government of Upper Austria and
by the FWF (Austrian Science Foundation) SFB project P1302.

20 Piroi, Buchberger: An Environment for Building Mathematical Knowledge Libraries

a. The translation of the vast amount of mathematical knowledge which is available
only in printed form (in textbooks, journals etc.) and which has to be brought
into a form (e.g. LaTeX), in which it can be processed by computer algorithms.
This is the problem of ”digitization” of mathematical knowledge, see e.g. [25] for a
survey on the existing projects in this area. The Theorema project is not engaged
in this area of MKM.

b. The translation of digitized mathematical knowledge, for example in the form of
LaTeX files, into the form of formulae within some logical system, e.g. predicate
logic so that, afterwards, they can be processed by reasoning algorithms (in par-
ticular automated theorem provers). Many current projects are addressing this
question, see e.g. MathML [26], OpenMath [13]. The Theorema project is not
engaged in this area of MKM.

c. The organization of big collections of formulae, which are already completely for-
malized within a logic system (e.g. predicate logic) in ”hierarchies of theories”. At
the moment, the largest such collection is Mizar [21]. Among other existing ones
we mention MBase [19], the Formal Digital Library project [1], the NIST Digi-
tal Library of Mathematical Functions [20], the libraries of the theorem provers
Isabelle [17], PVS [23], IMPS [16], Coq [14].

The subproblem c., again, has two sub-aspects:

c1. The organization of formalized mathematical knowledge by means of math-
ematical / logical structuring mechanisms like domains, functors, and cate-
gories. (Within Theorema, these questions are treated, for example, in [7].)

c2. The additional annotation of formalized mathematical knowledge by ”labels”,
so that blocks of mathematical knowledge can be identified and combined in
various ways without actually going into the ”semantics” of the formulae.

For the above and other overall views of MKM see [11, 2] and [4].
This paper exclusively deals with the subproblem c2. Traditionally, mathematical

texts (collections of formulae) are organized in chapters, sections, subsections, etc. and
individual formulae may have additional descriptive key words like ”Definition”, ”Theo-
rem”, ”Lemma” etc. and subformulae may also have individual labels like ”(1)”, ”(2)”,
”(a)”, ”(b)”, or ”(associativity)” etc. All these external descriptors of formulae are used
as (hierarchical) labels, which have no actual logical meaning or functionality, but they
are only used for quick (and hopefully unique) referencing of formulae in big mathemat-
ical texts. Also, parts of large mathematical texts may be available in various files and
often we will like to include text from various files as parts of another.

In traditional mathematical texts, these various descriptors of blocks of formulae
and individual formulae are usually assigned in an ad hoc way. However, for the future
computer-based management of mathematical knowledge, tools for generating and using
these descriptors for accessing pieces of mathematical text and individual formulae are
of vital practical importance.

In this paper, we report on tools which we developed recently for supporting the
automated generation of unique labels (descriptors) for formulae and collections of for-
mulae within the Theorema system and for using these labels in a systematic way for

Computer-Supported Mathematical Theory Development’04 21

the build-up of coherent formal mathematical texts, i.e. collections of formulae within
the Theorema version of predicate logic. Although these tools have been developed for
Theorema, the design principles of the tools are independent of Theorema and may be
useful also for other systems of formal mathematics. The design of the tools is based on
ideas of the second author, the concretization for Theorema and actual implementation
is part of the first author’s forthcoming PhD thesis [24].

The plan of the paper is as follows: In section 2 we review the work that is going
on in the area of Mathematical Knowledge Management and we give the main design
idea of our tools, as a mathematical document editing environment. In section 3 we
will describe how they are integrated in Theorema. We will end with conclusions and
remarks on future work in section 4.

2 Towards Mathematical Document Parsing

When thinking of a mathematical knowledge base, most of us will, more or less, have
in mind a big collection of formulae (definitions, theorems, etc.) organized in some
hierarchical structure. Usually, this knowledge is to be found in specialized books, which
have the big disadvantage of presenting the information in a static way. Searching in
them can only be done syntactically and is time consuming. An important step forward
was done by using computers to electronically store and search within mathematical
documents (organizational problem a. in the previous section).

As the Internet became one of the most handy and used tools for finding information,
it was a natural step to employ it for making mathematical knowledge widely available.
Still, for some time, mathematical formulae were displayed only as graphics.

Using the MathML recommendation of W3C [26], it is now possible to display and
communicate formulae. Being an application of XML, MathML benefits from the exist-
ing tools that manipulate XML files. Though it does offer some semantics of the symbols
in the mathematical formulae, the set of these symbols is too restricted when compared
to those used by working mathematicians. To ameliorate this situation projects like
OpenMath [13] and OMDoc [18] emerged. The OpenMath standard concentrates on
representing mathematical objects together with their semantic meaning, allowing them
to be exchanged between computer programs, stored in databases, or published on the
worldwide web. Though it is not exactly so, one can view OpenMath as extending
the MathML capabilities by using “content dictionaries” where mathematical symbols
are defined syntactically and semantically. OMDoc is an extension of OpenMath and
MathML, adding capabilities of describing the mathematical context of the used Open-
Math objects.

An important drawback of the standards mentioned above is that the coherence of
the different documents (e.g. content dictionaries) is not automatically checked. This
has to be done by a human, the task being rather difficult because the representation
formats are not human oriented. This representation confronts us with another issue,
which we intend to address in this paper: publishing mathematics using these repre-
sentations is not attractive for the everyday mathematician. There is ongoing work to
improve this state of facts, the latest the authors are aware of being presented in [15].

The mathematical documents that a user types into the computer are one main

22 Piroi, Buchberger: An Environment for Building Mathematical Knowledge Libraries

ingredient in building a mathematical knowledge base. In the ideal case, the human user
does nothing else than typing his or her ideas and formulae into the computer, using a
user-friendly environment that allows easy formula editing, like Maple or Mathematica.
A program will take, then, this document and process it, extracting all the information
of interest, organizing it, correlating it with (eventual) existing documents, making it
available for the theorem provers, maybe even correcting eventual typos. As this is
at the moment not yet possible, we may try to come as close as possible to such an
mathematical authoring environment. For this, we have to ask the user to accept the
current limitations of the existing computer programs and follow some well thought
guidelines in writing the documents.

The main goal of the mathematical document editing environment we propose is
to let the author concentrate on writing. We want to reduce the task of semantically
annotating the document the user is working on to a minimum necessary. In order to
fruitfully process the finished document we restrict the author to use a certain style for
it. Most importantly, the user should:

A. separate text from mathematical formulae; and

B. group the formulae under certain headers (Definitions, Theorems, Propositions,
etc.).

When a document respects the A. and B. requirements, a purpose specific document
parser is able to

• identify the mathematical content from the rest of the document,

• correctly identify the mathematical knowledge types of the formulae, and

• store the identified knowledge in a form that is usable for other automated activ-
ities, e.g. proving.

We envision that advanced tools will take the output of such a dedicated document
parser and extract more information from it, like singling out the defined concepts and
their properties, generate new knowledge, etc.

3 Environment Description

We believe that there are certain actions that have to be performed from the moment
a user decides to write a document with a mathematical content to the point where the
document becomes a part of a mathematical knowledge base. We identified three such
actions: a) writing the document following some guidelines; b) verifying (parsing) the
document; and c) inserting the document into the knowledge base. Which guidelines
we mean at point a) will become clear in Subsection 3.1. In the following, we discuss
how each of these actions is performed in the environment proposed.

The implementation of our ideas is done in the frame of Mathematica and Theorema.
The Theorema system is designed to assist a mathematician in all of the phases of his
or her work (see [3, 5]). It is built on top of the computer algebra system Mathematica
[27]. As a mathematical editing environment, Mathematica offers a very good front end
support by giving the possibility of combining text, mathematical expressions, graphics,
code in the same document, called “notebook”.

Computer-Supported Mathematical Theory Development’04 23

Theorema already provides constructors for writing, using, and composing formal,
mathematical basic knowledge (Definition, Proposition, Theory, etc.). However,
only few attempts wore done in building a base of formal mathematical knowledge in a
systematic way, a knowledge base that can be browsed, extended and used for proving
or teaching.

The environment we are about to describe is intended to improve this. With this
purpose in mind, we have designed a special Mathematica stylesheet and implemented
a set of functions for processing the notebooks that make use of it. We will refer to this
environment as the ”theory development environment”.

To start working within the theory development environment the user has to open
Theorema’s “Library Utilities” palette. This can be done, with the Theorema system
loaded, by calling OpenLibraryUtilities[]. The functionality of the buttons on this
palette will gradually be explained in the following subsections.

3.1 Writing the Document

To write a document that is to be included in a mathematical knowledge base, the
author has to use a certain type of notebook. This will ease the annotation part of the
work when typing the document into the computer. The document type we ask to be
used employs the stylesheet facilities of Mathematica. A Mathematica stylesheet is a
special kind of notebook, defining a set of styles that are allowed to be used in another
notebook ([27] section 2.10). As mentioned before, we have defined a special stylesheet
that allows annotating the document a user is working on, without his or her explicit
awareness. The annotation is done while writing and is not semantic: it only marks
cells and groups of cells in the notebook. This stylesheet will facilitate the parsing of
the finished document.

The simplest way to get a document with the specific style sheet is to use the ’Open
a Template’ button on the “Library Utilities” palette. What we obtain is a document
like in Figure 3.1. (The figure also presents the “Library Utilities” palette).

The users that are acquainted with the Mathematica front end can also proceed
differently, by opening a new notebook and choosing the ‘TheoremaTheory’ stylesheet
for it. We will continue our description with the assumption that the user pressed the
suggested button on the palette and has now opened a notebook like in Figure 3.1,
which we will call ‘the theory notebook’ from now on.

The theory notebook is divided into two parts: header and content.
The header part of the theory notebook contains a title and a code, an author, a

description, a reference and a dependencies section.
The code cell contains a short string of characters that is associated with the note-

book and its content. The user is not compelled to type in a code, though he or she
may prefer one that is a kind of compression of the document’s title. The reason for
this is revealed in the subsections below. When no code is given, one will be generated
when the document is verified (subsection 3.2).

The author section is a text cell where the author of the document will put his or
her name and the date the file was created.

The description section is reserved for, as its name says, describing in a few sentences
what the content of the document is. The author can add here more information about

24 Piroi, Buchberger: An Environment for Building Mathematical Knowledge Libraries

Figure 3.1: Theory notebook template.

the mathematical insights that a human reader may expect to get when reading the
document.

In the reference section the author can add pointers to books, web addresses, etc.
from where the document content was gathered or where more information can be
obtained. The author is free to add other information as well, leaving to his/her common
sense that it is relevant for this section.

The dependencies section is giving the author the possibility to specify what other
(existing) knowledge is needed in the current document. The author will have to specify,
here, the codes of the used theories and the specification of the used parts, if this is the
case. (For example, if the author wishes to use the axioms that define the real numbers,
which are to be found in an existing document with the code RealNos, he or she has
to write Include[“RealNos.Axioms”] in this section)

Only the document title is mandatory to be present in a theory notebook.
The content part of the document is where the actual formulae of the theory are to be

typed in. The basic kinds of mathematical knowledge recognized are axioms, definitions,
propositions, lemmata, theorems, corollaries, algorithms. The template document pro-
vides, for each of them, headings which, based on the style sheet definitions, will mark
the formulae underneath them as axioms, definitions, etc. To make it easy to recognize
the mathematical expressions we require that the formulae are typed in input cells. This
does not put any burden on the authors, since it is the default cell type that will be

Computer-Supported Mathematical Theory Development’04 25

considered as soon as one starts typing inside a Mathematica notebook.
For example, if a formula is considered to be a proposition it should be written

under a heading with the style “Proposition”. Though it contributes to clarity, it is not
necessary that the word “proposition” appears in the text of the heading. The cell style
of the heading has already the information that the formulae that will occur below this
header will be propositions. The user can modify the header’s text to better reflect the
meaning of the formulae underneath it. The author is not restricted to only one section
for a knowledge type. (see Figure 3.2)

Figure 3.2: Propositions in a theory notebook.

If the author wishes to attach labels to formulae this can be easily done by adding
a tag to the cell where they occur. In the document, they will appear in a smaller font
just above the formula cell. Tagging cells is a feature of the Mathematica front end
(see [27] section 2.11.9). After verifying the document each formula will have a label
attached. The labels are used to uniquely identify a formula in a library of theories.

As a final remark to this subsection we mention that the user can add anywhere in
the document textual information that helps a human reader understand the presented
knowledge.

3.2 Verifying the Document

Starting the verification process is done by pressing the ‘Process Documents’ button
on the “Library Utilities” palette. The stylesheet used for writing the document helps
identifying within it the information that is of interest for further processing.

The first step in verifying the document is to check wether the theory notebook has a
title and a code. If the title is missing the verifying process stops with an error message.
If the code is not present in the theory notebook the verifier will compute one by taking
the first letters of the words appearing in the title, and will add it in the notebook.

26 Piroi, Buchberger: An Environment for Building Mathematical Knowledge Libraries

The verifier will check now the theory code against a list of existing theory codes that
it has extracted from the knowledge base. If there is a name clash an error message is
returned and the process stops. The author has to correct this problem.

Next, the document verifier will check that the theories and part of theories that
are mentioned in the dependencies section are valid and do not lead to circles in the
dependencies graph. If there is a loop detected the process stops with an error message
and the user has to correct this matter.

Having passed these checks the verifiers will generate and attach labels to the formu-
lae in the file. The generation takes into account the theory code, the knowledge type
(axiom, definition, etc) and a numeric counter. This combination will uniquely identify
the formula among all the formulae in the knowledge base. When a formula already has
a user-given label, the verifier will not generate a label for it, but it will add the theory
code in front of it. Figure 3.2 presents a part of a verified theory notebook.

In the end, the verifier will also add a content section in the header part of the
document. This section is a compressed image of the content part of the document,
having hyperlinks to formulae in it. This is meant to help a human reader to find a
formula by just a click on its label.

3.3 Inserting the Verified Document into the Library

The verification process described above can be performed several times. When no
errors occurred, the theory document can be inserted into the theory library. This is
done by pressing the ‘Insert into Library’ button on the “Library Utilities” palette.

The procedure will use Theorema’s input parsing routines for the mathematical
formulae that occur in the document. Each of the formulae will be read, parsed and
the proper Theorema constructs will be created for it. This is the moment where the
annotations made via the style sheet used for editing the document play an important
role. A Mathematica package file, that contains the Theorema constructs, is created.
Loading this package will make available to the Theorema system all the formulae that
were introduced in the theory notebook. They can be used in the proving process.

At the same time, an entry about the theory notebook is made in a special theory
index file. The theory index file keeps a record of each theory notebook that is part of
the theory library. This includes information on where the file and its corresponding
Mathematica package are stored.

The functionality of the ‘Library Contents’ button on the “Library Utilities” palette
is the following: based on the entries stored in the theory index file, it will dynamically
construct and present the user a notebook with a list of theories already existing in
the knowledge library. The list has hyperlinks to the notebooks where the theories are
introduced.

4 Concluding Remarks and Future Work

We have presented an environment for editing documents, verifying and including them
into a mathematical knowledge library. This environment allows the users to concentrate
on writing, requiring only that they use a certain style sheet for their documents. A
document that uses this style sheet can be automatically processed in order to extract its

Computer-Supported Mathematical Theory Development’04 27

mathematical content and store it in a format that can be used for browsing, proving,
etc. For example, we could apply the tools described in [22] for obtaining derived
knowledge.

The theory library that is built using the described environment comprises both the
documents written by the authors and the processed files obtained out of them. The
reason for this is that a human reader will want to read and inspect the former, while
an automated theorem prover will use the latter.

There are features that are missing in our environment and are subject to future
work. Among them we mention the plan to improve the routine that extracts the
mathematical content from the theory notebook and inserts it into the theory library.
For example, automatically identifying the defined symbols in the document should
be possible, the user should be allowed to hierarchically organize the formulae in the
theory notebook. Also, we did not yet thoroughly consider how searching for notions
and concepts can be done best in such a theory library. Another issue is how to manage
modifications that the user might perform to the documents that are already included
in the theory library.

Bibliography

[1] S. Allen, M. Bickford, R. Constable, R. Eaton, C. Kreitz, L. Lorigo.
FDL: A Prototype Formal Digital Library. Cornell University, 2002.
(http://www.nuprl.org/FDLproject/02cucs-fdl.html)

[2] A. Asperti, B. Buchberger, J.H. Davenport, James Harold (Eds.) Proceedings of
the Second International Conference, MKM 2003 Bertinoro, Italy, February 16-18,
2003 Series: Lecture Notes in Computer Science, Vol. 2594, 2003, X, 225 p. Also
available online. Softcover ISBN: 3-540-00568-4

[3] B. Buchberger. Mathematical Knowledge Management Using Theorema. In [11].

[4] B. Buchberger, G. Gonnet, M. Hazewinkel. Annals of Mathematics and Artificial
Intelligence, Volume 38, Volume 38, Number 1-3, May 2003. Kluwer Academic
Publishers, ISSN 1012-2443.

[5] B. Buchberger. Theorema: A short introduction. The Mathematica Journal,
8(2):247–252, 2001.

[6] B. Buchberger. Algorithm Invention and Verification by Lazy Thinking. In: D.
Petcu, V. Negru, D. Zaharie, T. Jebelean (eds), Proceedings of SYNASC 2003
(Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania,
October 14, 2003), Mirton Publishing, ISBN 9736611043, pp. 226.

[7] B. Buchberger. Groebner Rings in THEOREMA: A Case Study in Functors and
Categories, SFB (Special Research Area) ”Scientific Computing” Technical Report
Nr. 2003 - 46, Johannes Kepler University, Linz, Austria, 2003.

[8] B. Buchberger. Towards the Automated Synthesis of a Gröbner Bases Algorithm.
RACSAM (Review of the Royal Spanish Academy of Science), to appear, 10 pages.

28 Piroi, Buchberger: An Environment for Building Mathematical Knowledge Libraries

[9] B. Buchberger. Computer-Supported Mathematical Theory Exploration: Schemes,
Failing Proof Analysis, and Metaprogramming. Submitted, also available as Tech-
nical Report from RISC, Johannes Kepler University, Austria.

[10] B. Buchberger, A. Craciun. Algorithm Synthesis by Lazy Thinking: Examples and
Implementation in Theorema. In: Fairouz Kamareddine (ed.), Proc. of the Mathe-
matical Knowledge Management Workshop, Edinburgh, Nov. 25, 2003, Electronic
Notes on Theoretical Computer Science, volume dedicated to the MKM 03 Sym-
posium, Elsevier, ISBN 044451290X, to appear.

[11] B. Buchberger, O. Caprotti. Editors of the Proceedings of the First International
Workshop on Mathematical Knowledge Management: MKM’2001 RISC, A-4232
Schloss Hagenberg, September 24-26, 2001. ISBN 3-902276-01-0.

[12] B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W.
Windsteiger. The Theorema Project: A Progress Report. In: Symbolic Computation
and Automated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on
the Integration of Symbolic Computation and Mechanized Reasoning, August 6–
7, 2000, St. Andrews, Scotland, M. Kerber and M. Kohlhase eds.), A.K. Peters,
Natick, Massachusetts, pp. 98–113. ISBN 1–56881–145–4.

[13] O. Caprotti, D. Carlisle. OpenMath and MathML: Semantic Mark Up for Mathe-
matics. In ACM Crossroads, ACM Press, 1999.

[14] The Coq proof assistant. (http://coq.inria.fr/coq-eng.html)

[15] G. Goguadze, A. González Palomo. Adapting Mainstream Editors for Semantic
Authoring of Mathematics. Presented at the Mathematical Knowledge Management
Symposium, November 2003, Heriot-Watt University, Edinbourgh, Scotland.

[16] IMPS: An Interactive Mathematical Proof System. Developed at The
MITRE Corporation by W. M. Farmer, J. D. Guttman, F. J. Thayer.
(http://imps.mcmaster.ca/)

[17] Isabelle. Developed at Cambridge University (Larry Paulson) and TU Munich (To-
bias Nipkow). (http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html)

[18] M. Kohlhase. OMDoc: An Infrastructure for OpenMath Content Dictionary Infor-
mation. In ACM SIGSAM Bulletin, volume 34, number 2, pages 43-48, 2000.

[19] M. Kohlhase, A. Franke. MBase: Representing Knowledge and Context for the
Integration of Mathematical Software Systems. Journal of Symbolic Computation
23:4 (2001), pp. 365 – 402.

[20] D.W. Lozier, NIST Digital Library of Mathematical Functions. In Annals of Math-
ematics and Artificial Intelligence, vol. 38, No. 1–3, May 2003. Eds. B. Buchberger,
G. Gonnet, M. Hazewinkel. Kluwer Adacemic Publishers, ISSN 1012-2443.

[21] The Mizar System. Developed at the University of Warsaw, directed by A. Trybulec.
(http://mizar.uwb.edu.pl/system/)

Computer-Supported Mathematical Theory Development’04 29

[22] K. Nakagawa, B. Buchberger. Two Tools for Mathematical Knowledge Management
in Theorema. In [11].

[23] S. Owre, J. Rushby, N. Shankar, D. Stringer-Calvert, PVS: An Experience Report,
In: Applied Formal Methods—FM-Trends 98. Eds. D. Hutter, W. Stephan, P.
Traverso, M. Ullman. LNCS vol. 1641, pp. 338–345. Springer-Verlag, Germany.

[24] F. Piroi. Tools for Using Automated Provers in Mathematical Theory Exploration.
Ongoing PhD thesis, to be finished in autumn 2004.

[25] S. Rockey. Mathematics Digitization, at Cornell University, Mathematics Library.
http://www.library.cornell.edu/math/digitalization.php

[26] W3C Math Home: What is MathML? (http://www.w3.org/Math/)

[27] S. Wolfram. The Mathematica Book. Wolfram Media Inc. Champaign, Illinois, USA
and Cambridge University Press, 1999.

Computer-Supported Mathematical Theory Development’04 31

Integrated Proof Transformation Services

Jürgen Zimmer1 Andreas Meier2 Geoff Sutcliffe3

Yuan Zhang3

1 School of Informatics, University of Edinburgh, Scotland
jzimmer@inf.ed.ac.uk, http://www.mathweb.org/~jzimmer

2 DFKI GmbH, Saarbrücken, Germany
ameier@dfki.de, http://www.ags.uni-sb.de/~ameier

3 Department of Computer Science, University of Miami, USA
{geoff@|yuan@mail.}cs.miami.edu, http://www.cs.miami.edu/~geoff

Abstract

In the last few decades a large variety of mathematical reasoning tools, such as
computer algebra systems, automated and interactive theorem provers, decision
procedures, etc. have been developed and reached considerable strength. It has
become clear that no single system is capable of providing all types of mathemat-
ical services, and that systems have to be combined for ambitious mathematical
applications. Unfortunately, many mathematical reasoning systems use propri-
etary input and output formats, and the output in these system-specific formats
is often incomprehensible to other components and human users. Transformation
tools and data-exchange formats are necessary in order to combine systems and
to grant common access to mathematical content. This paper describes the inte-
gration of several proof transformation tools in a Java agent architecture, their
description in a mathematical service description language, and their combination
via a brokering mechanism. The applicability of the approach is demonstrated with
an example from group theory.

1 Introduction

In the last few decades a large variety of mathematical reasoning tools, such as com-
puter algebra systems, automated and interactive theorem provers, decision procedures,
etc. have been developed and reached considerable strength. Diverse repositories of
formalized mathematics have also emerged, e.g., [19]. Despite some successful applica-
tions of these systems, none of them have scaled up to a mathematical assistant system
providing all kinds of mathematical services. The vision of a powerful mathematical
assistant environment that provides supports for most tasks of a working mathemati-
cian has recently come into focus, stimulating new projects and international research
networks across the disciplinary and systems boundaries. Examples are the European
CALCULEMUS [12] (integration of computation and deduction) and MKM [4] (math-
ematical knowledge management) initiatives, and the American QPQ [14] repository of
deductive tools. A main goal in these initiatives is to bring together approaches from

32 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

different directions. It has become clear that no single system is capable of providing
all types of mathematical services, and that systems have to be combined for ambitious
mathematical applications. For example, subgoals of one component are commonly
delegated to other specialist components, such as automated theorem proving (ATP)
systems (e.g., see [27, 6]). Unfortunately, many mathematical reasoning systems use
proprietary input and output formats, and the output in these system-specific formats
is often incomprehensible to other components and human users. Transformation tools
and data-exchange formats are necessary in order to combine systems and to grant com-
mon access to mathematical content. This holds, in particular, for the output from ATP
systems, because their output often reflects the peculiarities of the internal calculus and
proof search procedure.

This paper describes the integration of several proof transformation tools in a Java
agent architecture, their description in a mathematical service description language,
and their combination via a brokering mechanism. The proof transformation tools
provide the following functionality: 1) The Otterfier system translates arbitrary first-
order resolution proofs into resolution proofs whose inference steps use only the inference
rules of the Otter system [15]. 2) The Tramp system [16] translates problems in full first
order form (FOF) logic to equisatisfiable clause normal form (CNF), and translates
resolution proofs into proofs in the Natural Deduction (ND) calculus at the assertion
level. 3) The P.rex system [10] translates ND proofs into natural language. Ideas from
Semantic Web research are being adopted to express the functionality of these tools
in the service description language MSDL [3]. A brokering mechanism is then used to
combine the proof transformation services, to provide customized compound services
that are capable of answering queries from other reasoning systems or human users.
For example, given a conjecture in classical first-order predicate logic, a proof assistant
system could ask for a resolution or ND proof of the conjecture. A human user of the
proof assistant may extend the query to request a natural language version of the proof.

The transformation tools and their combination depends heavily on the newly emerg-
ing TSTP data-exchange format for problems and proofs [23]. Specifically useful for this
work, TSTP defines a syntax for problems in FOF and in CNF. and a format for reso-
lution style derivations. A refutation in TSTP contains initial clauses, i.e. the clauses
given to an ATP system or produced by its CNF generator, and the derived clauses
together with the inference rules used to derive them.

This paper is structured as follows: First the various systems involved are introduced
in section 2. Section 3 presents the services offered by the systems, and the brokering
mechanism that combines these services. The integration approach is explained with
a sample application in section 4. Finally, section 5 concludes with some discussion of
related and future work.

2 The Systems Involved

2.1 Automated Theorem Proving Systems

This work makes use of the ATP systems Otter and EP. Otter [15] is designed to prove
theorems stated in first-order logic with equality. Otter’s inference rules are based on
resolution and paramodulation, and it includes facilities for term rewriting, term order-

Computer-Supported Mathematical Theory Development’04 33

ings, Knuth-Bendix completion, weighting, and strategies for directing and restricting
searches for proofs. Otter is particularly interesting for our application because the
inference rules used in Otter refutation proofs are quite limited, and Otter proofs can
therefore readily be used by the proof transformation system Tramp (see section 2.3).
A modified version of Otter is also used in Otterfier to transform resolution proofs (see
section 2.2).

EP is an equational theorem prover, combining the E system [21] with a proof
analysis tool for extracting the required inference steps. The calculus of EP combines
superposition (with selection of negative literals) and rewriting. No special rules for
non-equational literals have been implemented, i.e., resolution is simulated via paramod-
ulation and equality resolution. On the one hand, EP is typically much stronger than
Otter when proving theorems in automatic mode (cf. CADE system competitions 15
and 16). On the other hand, EP uses rather complex inference rules which makes its
proofs hard to process with other systems (e.g., Tramp - see section 2.3).

2.2 Otterfier - A CNF Derivation Transformer

The derivations (typically refutations) output by contemporary CNF based ATP sys-
tems are built from inference steps, which have one or more parent clauses and one
resultant inferred clause. The inference rules that create the steps vary depending on
the ATP system, ranging from simple binary resolution through to complex rules such
as superposition [2]. In almost all cases the inferred clauses are logical consequences
of their parent clauses, the most common exception being clauses resulting from the
various forms of splitting that have been implemented in ATP systems such as Vam-
pire [18], E, and SPASS [24]. While a wider range and complexity of inference rules
typically improves the performance of ATP systems, it is impractical to require proof
postprocessing tools to be able to process inference steps created by all the various rules
(and new ones that may be invented in the future). It is therefore desirable to be able
to transform derivations so that each inference step uses one of a limited selection of
inference rules that are amenable to a range of postprocessing operations. The Otterfier

system is a transformation tool that transforms a source derivation containing source
inference steps of logical consequence, to a derivation whose inference steps use only
selected inference rules available in Otter. The transformation is independent of the
inference rules used in the source inference steps, relying only on the inferred clauses
being logical consequences of their parent clauses.

Otterfier uses a modified version of Otter. The standard Otter system includes the
hints strategy. Hints are normally used as a heuristic for guiding the search, in particular,
in selecting the given clauses and in deciding whether to keep derived clauses. The fast
version of the hints strategy, called hints2 in Otter, allows the user to specify a set of
clauses against which newly inferred clauses are tested for subsumption. For Otterfier

the hints strategy has been modified so that when a newly inferred clause is equal to or
subsumes a hint, the search is halted and the derivation of the newly inferred clause is
output. This modified strategy is called the target strategy.

The basic mechanism of Otterfier is to place the parents of a source inference step
into Otter’s set-of-support list, and the inferred clause into Otter’s hint list. The in-
ferred source clause is called the target clause in this context. Otter is then run with a

34 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

complete selection of inference rules, e.g., binary resolution, factoring, and paramodula-
tion. As Otter derives the logical consequences of the parent clauses, the target strategy
checks each logical consequence against the target clause in the hints list. When the
target clause is derived or subsumed, the derivation output by Otter provides a trans-
formed version of the source inference step, using only Otter’s inference rules. A source
derivation is transformed by performing this transformation on each source inference
step, and the combined transformed steps form a complete transformed derivation.

The search strategy of the modified Otter is the default strategy of the normal Otter,
i.e., aimed at finding a refutation of the input clauses. If the parent clauses of a source
inference step are satisfiable, as are the parents of a source inference step in most cases,
then no refutation can be found (see below for the case when the parent clauses are
unsatisfiable). In this situation Otter derives clauses with a focus on clauses with lower
symbol count. As the number of clauses with a given symbol count is finite, Otter
derives longer and longer clauses as its search progresses, eventually deriving clauses
whose length is that of the target clause. By that stage the target clause can be derived
or subsumed. While Otter can be configured to be refutation complete, it is not known
to be deduction complete, i.e., it is possible that the target clause may never be derived
or subsumed. In practice this possibility has not yet been encountered, and if it does
occur it will merely be a cause of incompleteness of the transformation process.

There are several special outcomes from the target strategy that allow Otterfier to
optimize the transformed derivation. First, if the clause derived by Otter subsumes
the target clause (rather than being only equal to the target clause), Otter’s derived
clause replaces the corresponding parent clause in subsequent source inference steps.
This maintains the coherency of the transformed derivation. Second, the clause derived
by Otter might subsume the inferred clause of a subsequent source inference step of
which the current target clause is a parent or ancestor. In this situation the subsequent
inference step is removed from the source derivation, and Otter’s derived clause replaces
the inferred clause of the subsequent inference step. Third, if the source derivation
is a refutation, i.e., ends with an empty clause, and Otter derives the empty clause
while searching for a non-empty target clause, then a transformed refutation is created,
consisting of only the transformed inference steps that end at Otter’s derived empty
clause. Both the second and third special cases allow Otterfier to produce a transformed
derivation that is, in some sense, shorter than the source derivation. The discovery of
such derivations is of interest in it’s own right [25].

2.3 Tramp - A Natural Deduction Proof Generator

The Tramp system [16] can transform the output of several automated theorem provers
into natural deduction proofs at the assertion level [13]. The assertion level allows
for human-oriented macro-steps justified by the application of theorems, lemmas, or
definitions, which are collectively called assertions. For instance, the assertion level
step

F⊂G c∈F
c∈G ⊂DEF

derives the conclusion c ∈ G by an application of the subset definition ⊂DEF —
formalized by ∀S1.∀S2.(S1 ⊂ S2 ⇔ ∀x.(x ∈ S1 ⇒ x ∈ S2))— from the premises c ∈ F

Computer-Supported Mathematical Theory Development’04 35

and F ⊂ G. A corresponding base ND proof, including the expansion of the subset
definition, consists of a lengthy sequence of ND steps.

Tramp consists of a set of transformation procedures. First, there are transformation
procedures that take a proof output from an ATP system and transform it into an
internal resolution proof object. In its current distribution Tramp is able to process
the output of the ATP systems SPASS, Bliksem, Otter, Waldmeister, ProTeIn, and
EQP. At the heart of Tramp is a transformation procedure that creates an ND proof
at the assertion level. Finally, the resulting ND proof at the assertion level can be
further processed. In particular, each assertion application can be expanded such that
the resulting proof is a pure ND proof without assertion application steps. Tramp can
output its proofs in LATEX format as well as in the languages POST and Twega (cf.
section 2.4).

The original Tramp system could take only one input: a description of a FOF problem
in POST syntax. Tramp then translated the FOF problem into its equivalent CNF and
called one of the supported ATP systems. The result of the ATP system was then
converted into Tramp’s internal format and an ND proof for the original conjecture was
created. The reason for the CNF creation within Tramp is that, in order to create a ND
proof, Tramp has to establish a connection between the literals of a resolution proof and
the corresponding literal sub-formulae in the original FOF problem.

In order to employ Tramp in the integrated proof transformation system, it was nec-
essary to extend Tramp in three ways: (1) A new input module for TSTP resolution
proofs was developed. Currently, this TSTP module exists in parallel with the trans-
formation procedures for the ATP systems supported by Tramp. However, TSTP will
eventually become the only necessary input format of Tramp. (2) Tramp now accepts
two inputs: the FOF description of the original conjecture and a TSTP resolution proof
of the conjecture. Tramp tries to map the literals of the initial clauses in the resolu-
tion proof to the corresponding literal sub-formulae of the original first-order formulae.
However, Tramp can compute this mapping only if the initial clauses of the resolution
proof comply with Tramp’s clause normal form (CNF) algorithm (see also section 3). If
this is the case Tramp produces an ND proof of the FOF problem. (3) A FOF problem
generating procedure was added. This is activated if no FOF problem is provided as
input, or if Tramp cannot compute the relationship between the literals of the resolu-
tion proof and the literal sub-formulae of the FOF problem. The procedure computes
a FOF problem description that corresponds to the initial clauses in a given resolution
proof, by creating a disjunction of the literals in each clause and universally quantifying
all variables. Since the transformation procedure cannot distinguish between Skolem
functions and other functions, it interprets every function symbol as a function of the
input signature, and does not create any existential quantifications.

The extensions are important for the use of Tramp in the integrated transformation
system: The first allows Tramp to work on TSTP proofs and to be coupled with other
reasoning systems, such as Otterfier. The second makes Tramp independent of the ATP
system used. The third reduces the necessary input and enables a broader application
of Tramp.

36 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

2.4 P.rex - A Natural Language Proof Generator

P.rex [10] is an interactive natural language proof explanation system for machine-
generated proofs. It adapts its explanations to the user and can interact with the user
by questions and requests [9]. In the context of the integrated transformation system
the full functionality of P.rex is not exploited – it is used only to obtain a single natural
language explanation of a proof.

P.rex is based on a logical framework and uses the formal language Twega for
inputting proofs. Since Tramp can output Twega format, Tramp’s ND proofs can be
further processed by P.rex . A proof is handled by P.rex in two steps: First, a dialog plan
is created, and this is then passed to a presentation component that creates a natural
language presentation [10]. P.rex can provide its natural language explanation in ASCII,
LATEX, and a markup language similar to HTML.

The (quality of the) output of P.rex depends on the availability of linguistic knowl-
edge. Linguistic knowledge is stored in a database that is structured in theories. In
order to make use of the linguistic knowledge the theory to which the problem belongs
has to be provided as the second input to P.rex . This feature is not yet used in the
integrated transformation system.

3 Combination of Transformation Services

A framework for describing the capabilities of deduction systems in a formal service
description language was introduced in [26]. These “semantic” descriptions can be used
for service discovery and brokering, i.e., the search for services suitable for tackling a
given problem. A broker can also use the service descriptions to dynamically combine
systems to solve a given problem. Human users or reasoning systems can simply send
queries to a broker and wait for a result. Following this idea, some of the functionality
of the systems described in section 2 have been captured in the service description
language MSDL [3]. This section briefly describes the ontology underlying the service
descriptions, the descriptions themselves, and the brokering mechanism.

3.1 An Ontology for Service Descriptions

Semantic descriptions of services offered by deductive components depend on a com-
monly agreed ontology. We are currently developing such an ontology in the Web
Ontology Language (OWL) [8]. Only a small fragment of the ontology, as needed to
describe the services offered by the systems of section 2, is described here - to increase
readability most properties are not shown. Figure 3.1 shows the “is-a” (subclass) rela-
tionship between some concepts of the ontology as solid lines with arrows. Properties
and their cardinality restrictions are denoted with dashed lines. Individuals (instances)
are connected to their concepts by dotted lines.

The concept Proving-Problem is crucial for this paper. In addition to the axioms and
the conjecture that ought to be proven, a Proving-Problem contains information such
as the logic in which the problem is defined and resource limits. A Proving-Problem
can be further specialized to a FO-Proving-Problem which is formulated in first-order
predicate logic, and then to TSTP problems in CNF or FOF syntax [23].

Computer-Supported Mathematical Theory Development’04 37

1..1

1..10..1

a..b

ND−Proof

ND−Proof
Twega

Thing

Proof

Formal−Proof

Proving−Problem

is−a

NL−Proof

TSTP
CNF−Problem

proofOf

FO−Proving−Problem

Semi−Formal−Proof

CNF−Refutation
TSTP−

FO−ATP−

SatisfiableTheorem

Unsatisfiable

... ...

Result

is−a

Result ProverStatus

is−a

statusproof
FO−ATP−

A B
p

i C C

subconcept of BA

Property p

individual ofi

Status
CNF−Refutation

TSTP−CNF−
LC−Derivation

TSTP−CNF−
BrFP−Derivation

TSTP
FOF−Problem

Figure 3.1: A fragment of the ontology for deduction services

Another crucial concept for this paper is FO-ATP-Result, which denotes results of
first-order ATP systems. The status of a FO-ATP-Result always contains one of the
valid statuses of first-order ATP systems as described in [23]. This status describes
unambiguously what an ATP system has established about the given problem, e.g.,
the status Unsatisfiable means that the system has established that the given set of
clauses is unsatisfiable. A FO-ATP-Result can also have a proof property, which can
contain at most one proof of a given conjecture (the range of the property proofOf is the
concept Proof). Certain domain-specific consistency rules apply such as, for instance,
that a FO-ATP-Result must not contain a proof if its status is Unknown.

The concept of Proofs subsumes Semi-Formal-Proofs, e.g., natural language proofs,
and Formal-Proofs in different logical calculi, e.g., ND or resolution calculus. Twega-
ND-Proofs are special ND-Proofs in the Twega language. TSTP-CNF-Refutations are
refutation proofs in TSTP format. A TSTP-CNF-LC-Refutation employs only infer-
ence rules that produce logical consequences. The latter can be further restricted to
a TSTP-CNF-BrFP-Refutation which employs only binary resolution, paramodulation,
and factoring.

3.2 Proof Transformation Services

The projects MathBroker [20] and MONET [5] have developed the Mathematical Service
Description Language (MSDL) [3] to semantically describe reasoning services on the
Semantic Web. Although MSDL aims at describing all kinds of mathematical services,
the two projects have, so far, investigated only the description of symbolic and numeric
computation services. We are using our expertise in deduction systems to extend the
use of MSDL to deduction services.

An MSDL document describes many different facets of a service. In what follows
we present only the facet important for this paper, namely the abstract mathematical
problem that can be solved.1 As an example a generic first-order theorem proving

1Those parts of the MSDL description needed for further classification of the service and for the

38 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

service, GenericATP, is presented. GenericATP is provided by an ATP system such as EP.
To increase readability, the service description is presented in a table rather than in the
XML syntax of MSDL.

Service: GenericATP

input parameters: problem::TSTP-CNF-Problem

output parameters: result::FO-ATP-Result

pre-conditions: >
post-conditions: proof(?result, ?proof) ⇒

type(?proof, TSTP-CNF-Refutation)

GenericATP has one input, a clause normal form of a conjecture in TSTP format
(TSTP-CNF-Problem), and one output, a FO-ATP-Result. A ‘::’ is used to separate
the name of a parameter (e.g., result) from the RDF type information in the MSDL de-
scription (e.g., FO-ATP-Result). It is important to note that GenericATP always delivers
a FO-ATP-Result after the given time resource2 is used up. However, the result might
not contain a proof. The pre-conditions of an MSDL service state service-specific
conditions the input parameters have to fulfill. The post-conditions can give further
information about the output parameters and can relate input and output parameters.
At the moment, pre- and post-conditions may contain RDF triples on concept proper-
ties, conjunctions of triples, and Horn clauses. GenericATP has no pre-conditions - they
are simply set to >. Its post-conditions say that if the result contains a proof then it is
a CNF refutation proof in TSTP format.

The following paragraphs describe the services provided by the systems introduced
in section 2.

The Otterfier Service. OtterfierService takes the result of any ATP system and tries
to transform the refutation proof in it, if existent, into a TSTP-CNF-BrFP-Refutation
which contains only applications of binary resolution, factoring and paramodulation
(the BrFP calculus). The fact that Otterfier is based on a modified Otter justifies that
the service returns a FO-ATP-Result:

Service: OtterfierService

input parameters: oldResult::FO-ATP-Result

output parameters: newResult::FO-ATP-Result

pre-conditions: >
post-conditions: proof(oldResult, ?oldProof) ∧

proof(newResult, ?newProof) ∧
type(?newProof, TSTP-CNF-BrFP-Refutation) ∧
altProof(?newProof, ?oldProof)

The post-conditions of OtterfierService express that the newly generated proof is a TSTP-
CNF-BrFP-Refutation, and is an alternative refutation proof of the same conjecture.3

service grounding, i.e. low-level details about how to invoke the service, are omitted.
2The time resource is a property of the concept Proving-Problem and, hence, also of the TSTP-CNF-

Problem input of the service.
3As a side effect, this equivalence provides a semantic verification of the original refutation.

Computer-Supported Mathematical Theory Development’04 39

Services offered by Tramp. Since GenericATP accepts only CNF problems, a clause
normalization service is needed for problems in FOF format. This is provided by Tramp,
which ensures that the resulting CNF is compatible with Tramp’s ND proof generation
routines. Thus, the first service of Tramp transforms a FOF problem into a CNF:

Service: ClauseNormalizer

input parameters: fofProblem::TSTP-FOF-Problem

output parameters: cnfProblem::TSTP-CNF-Problem

pre-conditions: >
post-conditions: sat-equiv(fofProblem, cnfProblem)

The fact that the new CNF problem is satisfiability-equivalent to the initial FOF prob-
lem is expressed in the post-conditions of ClauseNormalizer.

The second service of Tramp expects two inputs: a FOF problem in TSTP format,
and the result of an ATP system. Furthermore, the result of the ATP system should
contain a TSTP-CNF-BrFP-Refutation proof. If Tramp can match the literals in the
refutation’s initial clauses with literal sub-formulae in the FOF problem, then the service
returns an ND proof for the FOF problem. The service fails if the initial clauses of the
refutation proof are not compatible with Tramp’s CNF generator. It is very difficult
though to express this constraint in the pre-conditions of the service. It is therefore
kept implicit.

Service: NDforFOF

input parameters: fofProblem::TSTP-FOF-Problem
atpResult::FO-ATP-Result

output parameters: ndProof::Twega-ND-Proof

pre-conditions: proof(atpResult, ?proof) ∧
type(?proof, TSTP-CNF-BrFP-Refutation)

post-conditions: proofOf(ndProof, fofProblem)

Tramp’s third service takes the result of an ATP system, which should contain a
TSTP-CNF-BrFP-Refutation proof. Tramp internally creates a first-order problem from
the initial clauses in the proof, and transforms the refutation proof into a ND proof for
this problem. The service returns the ND proof as well as the newly generated FOF
problem:

Service: NDforCNF

input parameters: atpResult::FO-ATP-Result

output parameters: ndProof::Twega-ND-Proof
fofProblem::TSTP-FOF-Problem

pre-conditions: proof(atpResult, ?proof) ∧
type(?proof, TSTP-CNF-BrFP-Refutation)

post-conditions: proofOf(ndProof, fofProblem)

The P.rex Service. As mentioned above, only some of the functionality of P.rex is
used, to produce a natural language proof in LATEX. The P.rex service gets a Twega
proof in the ND calculus and provides a natural language proof in LATEX format:

40 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

Service: PrexND2NL

input parameters: ndProof::Twega-ND-Proof

output parameters: nlProof::NL-Proof

pre-conditions: >
post-conditions: proofOf(ndProof, ?p) ∧

informalProofOf(nlProof, ?p)

The post-conditions state that the result is an informal natural language proof of the
conjecture proved by the ND proof.

3.3 Brokering of Proof Transformation Services

Using the service descriptions introduced above the broker can combine them to obtain
customized compound services. The broker currently translates MSDL service descrip-
tions into plan operators. Queries are translated into an initial state of a modified
partial order planner. The planner uses the plan operators to come up with a suitable
combination of services that might answer the given query. These partially ordered
plans are linearized and translated into an execution protocol. For instance, if a proof
assistance system comes up with an open conjecture in first-order logic, it can encode
it in TSTP FOF format and ask the broker to deliver an ND proof for the conjecture.
Assuming some ATP service (GenericATP), the OtterfierService, and the two Tramp ser-
vices are available, the broker can then simply combine the four services. Figure 3.2
shows the resulting combination. Some post-conditions of the services are also shown
with dashed arrows.

TSTP
FOF

Problem

Generic
ATP

Generic
ATP

Clause
Normalizer ND−ProofNDforFOF

Otterfier
Service

sat−equiv

proofOf

proofOf altProof

Figure 3.2: A combination of four services

4 Example Scenario

In this section some possible combinations of the transformation services are demon-
strated with an example. Imagine that there are three users of our system, Peter, Susan
and Mary. They all want to prove the following problem from group theory:4

Let F be a group and U a subset of F . Moreover, for U the so-called subgroup-
criterion holds: if X,Y belong to U , then X ◦ Y −1 belongs to U (where ◦ is the
operation and −1 is the inverse function of the group F). Then, U is closed wrt.
to the inverse function of F , i.e., U contains X−1 whenever it contains X.

All three users managed to formalize the problem as FOF formulae. They could
then use more advanced tools like the Java OpenMath editor (JOME) [7] to input the

4Problem GRP006 in the TPTP library [22], although a slightly different formalization is used here.

Computer-Supported Mathematical Theory Development’04 41

formulas typing a Maple like syntax. The resulting OpenMath formulas could then
be translated automatically into TSTP format. The TSTP problem descriptions could,
among others, contain the following formulae:

fof(subset,axiom, (! [SG,G] :

(subset(SG,G)

<=> ! [X] : (member(X,SG) => member(X,G))))).

fof(inverse,axiom, (! [G,X] :

((group(G) & member(X,G))

=> (member(inverse(G,X),G)

& equal(multiply(G,X,inverse(G,X)),identity(G))

& equal(multiply(G,inverse(G,X),X),identity(G)))))).

...

fof(f_group,hypothesis, (group(f))).

fof(u_subset,hypothesis, (subset(u,f))).

fof(subgroupcriterion,hypothesis, (! [X,Y] :

((member(X,u) & member(Y,u))

=> member (multiply(f,X,inverse(f,Y)),u)))).

fof(prove_this,conjecture, (! [V] :

(member(V,u)

=> member(inverse(f,V),u)))).

In this formalization the function inverse as well as the operation multiply are
parameterized w.r.t. the group structure to which they belong. identity is a function
whose value is the unit element of the group.

Proving the Theorem
Peter, the first user of the system, is an expert in automated deduction and can un-
derstand resolution proofs. Thus he sends the FOF formalization of the problem to
the broker asking for a CNF Refutation in TSTP format. The broker simply combines
Tramp’s ClauseNormalizer service (to create the corresponding CNF problem) and the
GenericATP service offered by the EP system. The resulting refutation proof in TSTP
format contains, among others, the following clauses:

cnf(1,axiom,(member(X1,X2) | ~member(X1,X3) | ~subset(X3,X2))).

...

cnf(10,axiom,(equal(multiply(X1,X2,inverse(X1,X2)),identity(X1))

| ~group(X1) | ~member(X2,X1))).

cnf(12,axiom,(group(f))).

cnf(13,axiom,(subset(u,f))).

cnf(14,axiom,(member(multiply(f,X1,inverse(f,X2)),u)

| ~member(X1,u) | ~member(X2,u))).

cnf(15,conjecture,(member(sk2,u))).

...

cnf(31,derived,(member(identity(f),u)

| ~member(X1,u) | ~group(f) | ~member(X1,f)),

inference(pm,[status(thm)],[14,10,theory(equality)])).

...

cnf(273,derived,(~member(sk2,f)),

inference(rw,[status(thm)],[270,15,theory(equality)])).

42 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

cnf(274,derived,(false),

inference(rw,[status(thm)],[273,51,theory(equality)])).

The clauses marked as axiom and conjecture are derived by clause normalization
from the FOF problem formalization, e.g., clause 1 is derived from axiom subset. De-
rived clauses, such as clauses 31, 273, and 274, have a justification listing the inference
rule used to derive the clause and the parent clause names. For example, clause 273
was derived from clauses 270 and 15 by EP’s rw rule, which implicitly uses axioms of
equality.

Generating an ND Proof.
Susan, the second user has some knowledge of first-order logic, but knows nothing about
clauses and the resolution calculus. She also submits the problem to the broker but asks
for a ND proof instead. The broker comes up with the combination of services shown
in Figure 3.2. The OtterfierService transforms the refutation shown above into a new
refutation containing, among others, the following clauses:

cnf(1,initial,(member(A,B)|~member(A,C)|~subset(C,B))).

...

cnf(31,derived,(member(identity(f),u)|~member(A,u)|~group(f)|~member(A,f)),

inference(factor_simp,[status(thm)],[

inference(para_from,[status(thm)],[10,14,theory(equality)])])).

...

cnf(273,derived,(~member(sk2,f)),inference(binary,[status(thm)],[270,15])).

cnf(274,derived,(false),inference(binary,[status(thm)],[51,273])).

Note how Otterfier transformed EP’s single pm inference step (from clauses 10 and 14
to clause 31) to two inferences using Otter’s para from and factor simp inference rules.
In some cases a fully separate TSTP inference step containing the intermediate inferred
formula (rather than a single TSTP step containing two Otter inferences as here) may
be generated by Otterfier. Altogether, the resolution proof output by Otterfier consists
of 23 clauses, 9 initial and 14 derived.

Finally, the NDforFOF service is invoked with the FOF problem formalization of the
problem and the FO-ATP-Result of the OtterfierService. The underlying Tramp creates
an ND proof in linearized style as introduced in [1]. The lines of the proof are of the
form L. ∆`F (R), where L is a unique label, ∆`F a sequent denoting that the formula
F can be derived from the set of hypotheses ∆, and (R) is a justification expressing
how the line was derived. Tramp starts with an initial open ND proof that consists of
the axioms of the FOF problem and the conjecture. Each axiom becomes an initial
hypothesis (justified by Hyp), the conjecture is the initial goal (justified by Open). The
initial ND proof for the problem is as follows:5

5Variables are now written with lower case letters, and constants are capitalized.

Computer-Supported Mathematical Theory Development’04 43

⊂ DEF . ⊂ DEF `∀s′, s subset(s′, s)⇔
∀x (member(x, s′)⇒ member(x, s))

(Hyp)

UnitAx. UnitAx `∀g group(g)⇒
(member(identity(g), g)∧

∀x (member(x, g)⇒
(multiply(g, x, identity(g)) = x
∧ multiply(g, identity(g), x) = x)))

(Hyp)

InvAx. InvAx `∀g, x (group(g) ∧member(x, g))⇒
(member(inverse(g, x), g)

∧ multiply(g, x, inverse(g, x)) = identity(g)
∧ multiply(g, inverse(g, x), x) = identity(g))

(Hyp)

Criterion. Criterion `∀x, y (member(x, U) ∧member(y, U))⇒
member(multiply(F, x, inverse(F, y)), U)

(Hyp)

FGroup. FGroup ` group(F) (Hyp)
U ⊂. U ⊂ ` subset(U, F) (Hyp)
Conj. H `∀x member(x, U)⇒ member(inverse(F, x), U) (Open)

H = ⊂ DEF, UnitAx, InvAx, Criterion, FGroup, U ⊂

During the transformation of the resolution proof Tramp adds justification steps and
nodes to the ND proof until all nodes are justified. The complete ND-proof at assertion
level created by Tramp is (only the new lines and justifications):

L2. L2 `member(C, U) (Hyp)
L4. H1 `member(multiply(F, C, inverse(F, C)), U) (Criterion L2)
L5. H2 `member(C, F) (⊂ DEF U ⊂ L2)
L6. H3 `multiply(F, C, inverse(F, C)) = identity(F) (InvAx FGroup L5)
L7. H4 `member(identity(F), U) (=Subst L4 L6)
L8. H4 `member(multiply(F, identity(F), inverse(F, C)), U) (Criterion L7 L2)
L9. H3 `member(inverse(F, C), F) (InvAx FGroup L5)
L10. H5 `multiply(F, identity(F), inverse(F, C))

= inverse(F, C)
(UnitAx FGroup L9)

L3. H, L2 `member(inverse(F, C), U) (=Subst L8 L10)
L1. H `member(C, U)⇒ member(inverse(F, C), U) (⇒ I L3)
Conj. H `∀x member(x, U)⇒ member(inverse(F, x), U) (∀I L1)

H = ⊂ DEF, UnitAx, InvAx, Criterion, FGroup, U ⊂
H1 = Criterion, L2
H2 = ⊂ DEF, U ⊂, L2
H3 = InvAx, FGroup,⊂ DEF, U ⊂, L2
H4 = Criterion, InvAx, FGroup,⊂ DEF, U ⊂, L2
H5 = UnitAx, InvAx, FGroup,⊂ DEF, U ⊂, L2

Here the justifications ∀I and⇒ I of the nodes L1 and Conj are the basic ND rules
introduction of universal quantification and introduction of implication. =Subst, which
is used in the justifications of node L3 and L7, is the ND rule for equality substitu-
tion. All other justifications are assertion applications. For instance, the justification
(⊂ DEF U ⊂ L2) of node L5 is the application of assertion ⊂ DEF to the premises
U ⊂ and L2. Altogether the resulting ND proof at the assertion level consists of 17
nodes and 6 assertion steps. When all complex steps are expanded, then the resulting
basic level ND proof consists of 54 nodes.

The main – clearly comprehensible – steps in the direct ND proof are: First, assume
that an arbitrary C is in U (in L2). Then, use the subgroup-criterion to derive that the

44 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

identity of F is in U (in L7). Finally, use again the subgroup-criterion to derive that
the inverse of C is in U .

From ND to NL.
Mary knows only mathematical proofs as they are presented in textbooks. She asks the
broker to return a natural language proof for the problem. The broker therefore extends
the service sequence in Figure 3.2 with the PrexND2NL service. The P.rex system under-
lying this service can access basic linguistic knowledge about first-order logic connectives
but doesn’t have any knowledge about the particular domain or the problem.

From the ND proof at the assertion level, P.rex creates a natural language proof.
The relevant parts of the Postscript version of the proof are shown in Figure 4.3. In the
verbalization of assertion applications, this natural language proof refers to the axioms
of the ND proof, e.g., ⊂ DEF and Criterion. In the complete verbalization, which we
skip here, these axioms are introduced and verbalized as well.

[...] Let member(C,U). Then member(C,F) because subset(U,F)
by ⊂ DEF . Thus member(inverse(F,C), F) because group(F) by
InvAx. That implies that multiply(F, identity(F), inverse(F,C)) =
inverse(F,C) by UnitAx since group(F). That implies that
member(multiply(F,C, inverse(F,C)), U) by Criterion. That leads
to multiply(F,C, inverse(F,C)) = identity(F) by InvAx because
group(F). That implies that member(identity(F), U). Therefore
member(multiply(F, identity(F), inverse(F,C)), U) by Criterion. That
implies that member(inverse(F,C), U). Therefore member(C,U) implies
that member(inverse(F,C), U). That implies that member(x,U) implies
that member(inverse(F, x), U) for all x.

Figure 4.3: Fragment of the P.rex proof verbalization with basic linguistic knowledge

Mary still has some problems understanding the proof because P.rex was not given
any linguistic knowledge about the domain. Simple facts, such as the expression subset(t, t ′),
should be written as t ⊂ t′. Futhermore, member(x, s) should be written as x ∈ s. This
would considerably improve the readability of the proof.

It is important to note that our brokering mechanism acts as a black box and Mary
does, for instance, not have to work with theorem provers on the level of clauses and
resolution proofs.

Figure 4.4 shows the length of the four different proofs as well as the time for
finding/transforming the proofs involved. The run times were measured on a Pentium
IV 2GHz machine. The time of the Otterfier service is CPU time while all other times
are wall clock times. Both resolution proofs contain 9 initial clauses, all other clauses
are derived. The ND proof contains 6 assertion level steps and 4 ND calculus steps.
P.rex does not use any domain-specific linguistic knowledge while translating the ND
proof into natural language.

Computer-Supported Mathematical Theory Development’04 45

Proof Proof Length Time (secs) Format/Calculus

EP proof 19 clauses 0.031 EP

Otterfier proof 30 clauses 15 BrFP

Tramp proof 10 ND steps 4 ND

P.rex proof 10 sentences 54 NL

Figure 4.4: Lengths and proving times for the different proofs

5 Conclusion and Future Work

Ongoing work on integrated proof transformation services and their dynamic combina-
tion has been presented. By using the TSTP data-exchange format, and by defining
the notion of a resolution proof in a restricted calculus, it has been possible to combine
several independently developed systems that could not previously interact with each
other. The extension and integration of the systems into a Java framework has been
completed, and a prototypical version of the broker has been implemented. Efforts are
underway to make the services available as web services. An execution framework for
the service sequences planned by the broker will be implemented in the near future. The
outcome is an integrated service that can support mathematical reasoning from problem
specification in first-order logic through to proof presentation in natural language. Our
system absolves the users from the need to know details of system specific data rep-
resentations, low-level reasoning processes, and possible tool combinations. It is worth
mentioning that the brokering mechanism is domain-independent in the sense that the
only domain-specific knowledge is encoded in our ontology. There is no knowledge about
proof systems hardwired in our broker. Furthermore, our approach is not limited to a
first-order logic domain. With an appropriate extension of our ontology we hope to be
able to describe also higher-order theorem provers.

Several frameworks for the integration of reasoning systems have been developed.
The MathWeb Software Bus [27] (MathWeb-SB) integrates heterogeneous reasoning
systems at the system level. However, the user of the MathWeb-SB needed to have
quite a lot of knowledge of the systems involved. Furthermore, a dynamic combination
of systems by the MathWeb-SB is not possible. The question of how theorem proving
components can be easily combined in a single environment has led to the concept of
Open Mechanized Reasoning Systems [11] (OMRS). In OMRS, systems are described on
three different levels: the control, the logic, and the interface level. These descriptions
are far more fine-grained than the service descriptions used in this work, because they
aim at a low-level corporation of systems. OMRS has been studied mainly for the
combination of theorem provers and decision procedures.

Future work includes a refinement of the existing services, the incorporation of new
services and a more sophisticated brokering mechanism. At this stage Otterfier, for
instance, is capable of transforming a derivation only if all the inference steps produce
a logical consequence. As indicated in Section 2.2, many modern ATP systems use
some form of satisfiability preserving splitting rule, which is useful in the context of a
search for a refutation. Otterfier cannot transform derivations containing applications
of splitting. In the future it is planned to build a transformation tool that will remove

46 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

splitting steps from a derivation, by “glueing” together the parts of the derivation that
contain clauses inferred by splitting.

So far, our focus has been on first order theorem provers and proof transformation
services. In the future it would be desirable to integrate higher-order proving systems,
model generators, and decision procedures into the framework. The formalization of
systems’ logics and calculi in the Logical Framework (LF), implemented in the Twelf [17]
system, is being considered.

The brokering of services can be improved in several ways. Reasoning on our ontology
during plan formation, for instance, could improve the flexibility of our broker. The use
of several plans, conditional plans, and re-planning, could improve the broker’s behavior
in case plan execution fails.

Acknowledgments

Thanks to Christoph Benzmüller, Serge Autexier, and Armin Fiedler for their contri-
butions to this work.

Bibliography

[1] P.B. Andrews. Transforming matings into natural deduction proofs. In Proc. of
CADE-5, pages 281–292, 1980.

[2] L. Bachmair and H. Ganzinger. Rewrite-Based Equational Theorem Proving with
Selection and Simplification. Journal of Logic and Computation, 4(3):217–247,
1994.

[3] O. Caprotti and W. Schreiner. Towards a mathematical services description lan-
guage. In Proc. of the International Congress of Mathematical Software, ICMS
2002, Beijing, China, August 2002.

[4] The MKM Consortium. Mathematical Knowledge Management Network.
http://monet.nag.co.uk/mkm.

[5] The MONET Consortium. The MONET Project. http://monet.nag.co.uk/cocoon/
monet/index.html, April 2002.

[6] L. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gordon,
and Melham T. The PROSPER Toolkit. International Journal on Software Tools
for Technology Transfer, 4(2):189–210, 2000.

[7] L. Dirat. Jome: The java openmath editor. http://mainline.essi.fr/wiki/

bin/view/Jome/WebHome.

[8] S. Bechhofer et al. OWL – Web Ontology Language Reference, February 2004.
Available at http://www.w3.org/TR/owl-ref/.

[9] A. Fiedler. Using a cognitive architecture to plan dialogs for the adaptive expla-
nation of proofs. In Thomas Dean, editor, Proc. of the 16th International Joint

Computer-Supported Mathematical Theory Development’04 47

Conference on Artificial Intelligence (IJCAI), pages 358–363, Stockholm, Sweden,
1999. Morgan Kaufmann.

[10] A. Fiedler. P.rex: An interactive proof explainer. In Rejeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, Automated Reasoning — 1st International
Joint Conference, IJCAR 2001, number 2083 in LNAI, pages 416–420, Siena, Italy,
2001. Springer Verlag.

[11] F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning theories – towards an
architecture for open mechanized reasoning systems. IRST-Technical Report 9409-
15, IRST, Trento, Italy, Juni 1994.

[12] The Calculemus Interest Group. The CALCULEMUS Project. http://www.

eurice.de/calculemus/.

[13] X. Huang. Reconstructing proofs at the assertion level. In Proc. of CADE-12,
pages 738–752, 1994.

[14] SRI International Computer Science Laboratory. QED Pro Quo. http://www.qpq.
org.

[15] W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA, 2003.

[16] A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduc-
tion Proofs at the Assertion Level. In Proc. of CADE–17, volume 1831 of LNAI,
pages 460–464. Springer, 2000.

[17] F. Pfenning and C. Schürmann. System description: Twelf — A meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proc. of the 16th Inter-
national Conference on Automated Deduction (CADE-16), pages 202–206, Trento,
Italy, 1999. Springer-Verlag LNAI 1632.

[18] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

[19] P. Rudnicki. An Overview of the Mizar Project. In Proceedings of the 1992 Work-
shop on Types for Proofs and Programs, pages 311–332, 1992.

[20] W. Schreiner and O. Caprotti. The MathBroker Project. http://poseidon.risc.uni-
linz.ac.at:8080/index.html, October 2001.

[21] S. Schulz. System Abstract: E 0.61. In R. Gore, A. Leitsch, and T. Nipkow, editors,
Proc. of the International Joint Conference on Automated Reasoning, number 2083
in Lecture Notes in Artificial Intelligence, pages 370–375. Springer-Verlag, 2001.

[22] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In Alan
Bundy, editor, 12th International Conference on Automated Deduction, CADE-12,
volume 814 of LNAI, pages 252–266, Nancy, France, Juni 1994. Springer Verlag,
Berlin.

48 Zimmer, Meier, Sutcliff, Zhang: Integrated Proof Transformation Services

[23] G. Sutcliffe, J. Zimmer, and S. Schulz. Communication Standards for Automated
Theorem Proving Tools. In V. Sorge, S. Colton, M. Fisher, and J. Gow, editors,
Proc. of the Workshop on Agents and Automated Reasoning, 18th International
Joint Conference on Artificial Intelligence, 2003.

[24] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen, C. Theobalt,
and D. Tpoic. System Description: SPASS Version 1.0.0. In H. Ganzinger, editor,
Proc. of the 16th International Conference on Automated Deduction, number 1632
in Lecture Notes in Artificial Intelligence, pages 378–382. Springer-Verlag, 1999.

[25] L. Wos and G. Pieper. Automated Reasoning and the Discovery of Missing and
Elegant Proofs. Rinton Press, 2003.

[26] J. Zimmer. A Framework for Agent-based Brokering of Reasoning Services. In
Raul Monroy, Gustavo Arroyo-Figueroa, Luis Enrique Sucar, and Juan Hum-
berto Sossa Azuela, editors, MICAI, volume 2972 of Lecture Notes in Computer
Science. Springer, 2004.

[27] J. Zimmer and M. Kohlhase. System Description: The MathWeb Software Bus
for Distributed Mathematical Reasoning. In A. Voronkov, editor, Proc. of the 18th
International Conference on Automated Deduction, number 2392 in Lecture Notes
in Artificial Intelligence, pages 139–143. Springer-Verlag, 2002.

Computer-Supported Mathematical Theory Development’04 49

English Summaries of Mathematical Proofs

Marianthi Alexoudi1, Claus Zinn, Alan Bundy

Division of Informatics, The University of Edinburgh

Abstract

Automated theorem proving is becoming more important as the volume of appli-
cations in industrial and practical research areas increases. Due to the formalism
of theorem provers and the massive amount of information included in machine-
oriented proofs, formal proofs are difficult to understand without specific training.
A verbalisation system, ClamNL, was developed to generate English text from for-
mal representations of inductive proofs, as produced by the Clam proof planner.
The aim was to generate natural language proofs that resemble the presentation of
proofs found in mathematical textbooks and that contain only the mathematically
interesting parts of the proof.

1 Introduction

Automated theorem proving is becoming more important as the volume of its applica-
tions increases. It is a powerful tool for hardware design, as well as for the verification of
software systems. Additionally, formal methods are increasingly applied in mathemat-
ics e.g. for the construction of proofs for conjectures and the composition of formalised
theories.

Machine-generated proofs are difficult to understand without specific training and
familiarity with the given system’s formalism and the calculus being used. They are
represented in a specialised and artificial language, using a notation that seems incom-
prehensible to an inexperienced reader. Furthermore, the massive amount of informa-
tion presented in a formal proof leads to an over-detailed, and therefore hardly readable
proof, even for an experienced reader. One could also claim that a formal proof is math-
ematically ‘unstructured’, in the sense that it is hard to understand its overall logical
structure and identify the important definitions, lemmas and other logical dependencies.
Therefore machine-found proofs seem to be insufficient for an effective communication
between theorem provers and their users, particularly in terms of their presentation.

Due to the ‘unreadability’ of formal proofs, the task of their verbalisation and the
development of systems, whose output could be conveniently comprehended by non-
experts and effortlessly explained by experts became evident. In fact, one of the most
challenging tasks in the area of automated theorem proving is the realisation of an
effective translation of machine-found (formal) into human-oriented (informal) mathe-
matical proofs, and vice versa. Such a translation would eliminate the gap between the
mathematicians’ and the proof systems’ language and reasoning.

1M.Alexoudi@sms.ed.ac.uk,{zinn,bundy}@inf.ed.ac.uk

50 Alexoudi, Zinn, Bundy: English Summaries of Mathematical Proofs

This paper presents an implemented proof presentation system that generates Nat-
ural Language (NL) proofs at various levels of abstraction from (inductive) proof plans.
In section 2, related systems are introduced and their weaknesses are briefly discussed.
Section 3 provides an overview of ClamNL and examples of its output are presented. A
summary of the experimental results is presented in section 4 and the current state and
further work on this project are discussed in section 5. Finally, section 6 concludes.

2 Literature Survey

Several efforts have been made to improve the readability of machine-oriented proofs
by generating (English) NL versions of proofs. Numerous systems have been designed
and developed to produce informal proofs from formal ones that were produced using
various deduction techniques and calculi, such as Natural Deduction (ND), resolution
and λ-calculus.

Previous work can be classified into three main categories with respect to the output
that the existing systems have generated. The first category involves the first generation
of verbalisation systems, such as EXPOUND [5] and χ-proof [9] that generated low-
level NL proofs, definitely more readable and coherent from machine-found ones but
still obscure. Additionally, both Coq [6] and ILF [7] theorem proving systems have a
NL front-end that allows the generation of (pseudo)-NL proofs. Although these systems
use different methods to generate natural language proofs, most of them suffer from the
same problem. The NL versions of machine-oriented proofs were produced by translating
a great number of low-level steps, and thus they contained ‘obvious’ and unnecessary
information, such that even trivial proofs might be confusing. Furthermore, most of the
informal proofs produced by the above systems preserved the logical formulae in their
original form and text was inserted between them either in the form of introductory
phrases or as explanations of the inference rules. Thus, the NL proofs are characterised
by a mixture of formal and informal representation of the proof steps that reduces their
readability. The second group comprises systems such as PROVERB [12] and the NLG
module of the Nuprl theorem prover [11], that used more composite and sophisticated
techniques to eliminate the drawbacks of previous ones and generated more abstract and
human-like NL proofs. Regardless of the sophisticated methods used by these systems,
their output is still restricted in some aspects. These systems produce a unique NL
version of the corresponding machine-generated proof at a fixed level of abstraction
independent of the reader’s knowledge. Their output might be too advanced for novice
users and too elementary for experts, since it assumes a certain audience with specific
knowledge and it does not allow shifting between multiple abstraction levels. The last
category embodies systems such as THEOREMA [2] and P.rex [10] that are capable to
output various informal proofs for a single formal one.

An essential feature of proofs that enhance their readability is the resemblance to
human-written proofs and especially to those written by mathematicians, in terms both
of content and presentation. However, the attempts made mostly focus in resembling
the way that mathematicians write their proofs, rather than the way that mathemati-
cians reason during proof construction. In many cases this is an issue that arises from
the prover rather than the proof presentation system. The formal language and the

Computer-Supported Mathematical Theory Development’04 51

deduction techniques used for the construction of a formal proof, not only limit the
degree of similarity between informal and textbook proofs, but also restrict the level of
abstraction and the readability of an NL proof. More precisely, resolution calculi based
formal proofs are difficult to manipulate in order to produce coherent NL proofs, due to
the existence of a single calculus rule. As far as the ND calculus is concerned, although
ND proofs have more potential than resolution ones, it is still complex to abstract the
important proof steps from low level inference rules. On the other hand, it is more likely
to generate comprehensive and easy readable NL versions of formal proofs produced by
tactic-based environments, since related inference rules are grouped into tactics, each of
which approximates a single human inference step.

Therefore, aiming at the construction of informal proofs similar to those presented in
mathematical textbooks, we need to use formal proofs resembling the way that mathe-
maticians analyse and work out proofs. For instance, mathematicians recognise families
of proofs containing common structure and they use previously encountered proofs to
assist them in discovering new ones. The way that mathematicians work out their proofs
can be captured using the proof planning technique for constructing and representing
high-level proofs [3]. Proof plans are abstract representations of proofs at a level that
is better suited for manipulation beacuse of the absence of low-level derivations.

3 System Overview

ClamNL [1] is a proof presentation system built upon the Clam proof planning envi-
ronment [4] that generates NL proof at various levels of abstraction, similar to those
found in mathematical textbooks. Clam is a first-order predicate logic proof planner
that was used for the construction of proof plans for theorems whose proofs require the
application of various kind of mathematical induction over different data types.

The use of high-level representations of proofs, known as proof plans, enhances the
generation of abstract NL proofs. Furthermore, the process of formal proof conversion is
informed by a notion of ‘interestingness’ of proof steps. A set of heuristics has been em-
ployed to remove obvious and trivial parts of the proof and highlight its mathematically
interesting points.

ClamNL’s architecture is presented in Figure 1. Of the modules illustrated in Figure
1, the proof planner (Clam) and the XSLT-based software (Natural Language Generator)
that processes the templates are existing software. Each of the remaining components is
described in one of the following sections. ClamNL consists of three main modules, the
Abstraction Controller that enables the interaction of the system with the user and the
proof planner; the Structure Planner that handles the structure, the contents and the
presentation of the NL proofs to be generated; and the NL Generator that translates
the extracted parts of a proof plan to English text in a template-based manner.

3.1 Abstraction Controller

The Abstraction Controller (AC) controls the level of detail of a proof plan and in
turns the level of abstraction of the resulting NL proof. The AC, given a theorem
name, determines the number of proof versions that can be generated for that theorem.

52 Alexoudi, Zinn, Bundy: English Summaries of Mathematical Proofs

Figure 3.1: Architecture of the ClamNL verbalisation system

Moreover, given a theorem name and the required level of abstraction, it initialises the
process of generating the requested NL proof.

The process of abstracting a proof plan depends entirely on the theorem to be proven.
If the proof of a theorem involves the proof of another theorem, then the AC discards
from the original proof plan the subproof and passes the remaining proof plan to the
Proof Analyser and Extractor (PAE). This process can be repeated as many times as
the total number of theorems used to prove the original one. Therefore, the number
of NL proofs at different levels of abstraction depends on the number of theorems that
are used in the proof of the original one. In this case the resultant NL proof presents
the proof of the original theorem, in which other theorems are used for its completion.
Although none of them is proven, it is assumed that they hold.

3.2 Proof Analyser and Extractor

The Proof Analyser & Extractor PAE determines the nodes of an abstracted proof
plan to be included into a NL proof. Given an abstracted proof plan, PAE extracts
the mathematically interesting parts of a proof and omits standard and easily deducible
ones. During the extraction of interesting proof steps the proof plan tree is linearised and
every node (subproof) is handled separately. The output of PAE is a forest of proof steps
that is then passed to the Presentation Planner. An example of such transformation is
presented in Figure 2.

Computer-Supported Mathematical Theory Development’04 53

Figure 3.2: Extraction of mathematically interesting proof steps from a proof plan.

The ‘interestingness’ of proofs steps is defined by a knowledge base according to
which a proof step can be interesting, non-interesting, or partially interesting.

In general, apart from the theorem statement, the focus of interest in inductive
proofs is on the induction scheme used to prove the theorem and the induction variable
to which the induction scheme is applied. Also, the base and the step cases of an
inductive proof should be clearly stated. In the base case, the induction variable and the
constant to which the induction variable is instantiated, as well as the base case resulting
expression should be specified. Similarly, in a step case, the induction hypothesis and the
conclusion should also be specified. On the other hand, axioms and low-level methods
are classified as mathematically non-interesting proof steps and thus are discarded.
Moreover, rewriting on conjectures that produce the same conjecture as the one to
which they were applied should be ignored, as well as their resultant conjecture (i.e.
tautology). As partially interesting are charecterised proof steps whose some of their
contents are useful and some of them are not. An example of this category is the list
of hypotheses available every time a new goal is introduced, which might contain a new
assumption.

3.3 Presentation Planner

The Presentation Planner (PP)performs three vital tasks. It rearranges the contents
of the proof steps, inserts additional elements where appropriate, and transforms the

54 Alexoudi, Zinn, Bundy: English Summaries of Mathematical Proofs

proof steps to an intermediate representation format consisting of presentation units.
The ordered presentation units are then passed to Natural Language Generator module
to be verbalised.

The PP features two stages of reordering the contents of proof steps but not the
proof steps themselves. The first involves the checking of the proof steps ordering,
in case their order was lost during linearisation, and the reordering of the terms of a
mathematical formula from infix to prefix. The second involves the mapping of certain
compound terms of a conjecture into a more human-oriented representation and the
ordering of the new terms in the conjecture.

One feature involves the random selection of justification tokens that will be used
for the verbalisation of certain units. The Presentation Planner handles, in a non-
sophisticated way, commonly used tokens to avoid the repetition of identical standard
phrases in the proof outline. Every justification token corresponds to a single sentence
in the template-based sentence generator. In principal, this involves the identification
of base and step cases proof steps in order to avoid incorrect verbalisations. Another
approach to avoid multiple interesting proof steps in the proof outline involves the
merging of similar, adjacent proof steps.

Finally, the presentation of a proof in enhanced by organising the proof steps into
paragraphs and indenting them so that the proof structure is clear and thus coherent.
Also, an axiom table, consisting of all the axioms’ definitions used throughout the
proof, is appended to the end of the proof. During the structuring of the proof steps,
Presentation Planner (PP) converts the proof steps to XML elements and produces the
XML document to be fetched to the NLG module.

Figure 3.3: An example of presentation units to NL templates mapping.

3.4 NLG

The template-based generator maps presentation units to English statements. Text is
generated by mapping individual presentation units (XML elements) into mathematical
notions, concepts, variable names, words and sentences (XML templates). Figure 3
illustrates a sample of such a mapping. The Template-based generator, given an input
XML document, outputs a NL proof in a HTML or XML file format.

As a tool for the text generation, a major component of the EXEMPLARS framework
[14], the text builder was used as a wrapper for the XSLT text building transformation.

Computer-Supported Mathematical Theory Development’04 55

Also, a XSL stylesheet consisting of more than 400 templates was created for the map-
ping of the XML elements to English text. The XSLT engine matches the template
rules contained in the XSL stylesheet with the XML elements of the input document
and the text is generated, based on the XSL vocabulary.

NL proofs such as the one presented in Figure 4 consist of the theorem statement
and the outline of the proof. The actual proofs are constructed using a Lamport-style
proof presentation [13], consisting of the theorem statement, the proof outline and the
proof of the theorem.

3.5 Sample Output

The commutativity of addition is provided, as an example of the system’s output for
illustration purposes. The proof of the provided theorem is an example of a proof by
induction over natural numbers, one of the various induction schema available in Clam.
Others include one and two step induction on lists and trees.

Figure 4 presents an example of a NL version of a machine-found proof corresponding
to the commutativity of addition theorem, generated by ClamNL. This kind of output
is called a proof summary, since it states how a certain theorem can be proven. More
precisely, it is more like a proof description about what one should do in order to prove
a theorem, rather than a proof itself.

Figure 3.4: The proof summary of the commutativity of addition theorem.

The actual proof of the commutativity of addition theorem, but more abstract than
the complete one is presented in Figure 5. Such kinds of proofs involve the progress of
the proof until the stage where another known theorem is used to complete the proof of
the actual theorem.

Figure 6 2 shows a more detailed proof version of the commutativity of addition
theorem. Although the complete proof of the theorem is presented, it is not a direct
translation of the original, machine-found proof plan, since lots of proof steps and trivial
parts of the proof are omitted.

4 Experimental Results

ClamNL was developed to generate NL versions of formal mathematical proofs that
would be fluently readable and abstract and would resemble those found in mathematical
textbooks. To demonstrate and validate the project’s claims, a corpus of inductive

2In certain cases the template mapping produces minor grammatical errors, whose elimination is in
high priority

56 Alexoudi, Zinn, Bundy: English Summaries of Mathematical Proofs

Figure 3.5: A NL proof of the commutativity of addition theorem at an intermediate
level of abstraction

theorems was collected from approximately 130 supported theorems. The corpus was
selected so as to provide a wide range of theorems covering various degrees of difficulty
and complexity, as well as the use of various different induction schema.

Two groups of subjects were used, Clam experts and non-experts with different
mathematical background, in order to ensure that the NL proofs were accessible and
beneficial to a wide range of audience with various levels of expertise. Although the
number of participants was too limited to obtain a statistically representative sample,
the results gathered were beneficial and encouraging.

The results are classified into three categories, each of which corresponds to and
supports the project’s objectives.
Readability: The NL proofs were characterised as easily readable and coherent on two
counts. First, in terms of the linguistic nature of the proofs, since it is considerable
easier for a human to comprehend a proof in the (natural) language of mathematicians,
rather than rules represented in the given proof system’s formalism. Second, the use of
indentation was quite helpful in keeping track of deeply nested proofs (i.e. subproofs
by induction). However, in cases of deeply nested proofs it would be preferable to
have a hypertext-based or applet-based approach to hide or unfold parts of the proof
presentation on the fly upon user requests.
Abstraction Level: The availability of proofs at various levels of detail was found
extremely useful in digesting proofs. As regards the content of the NL proofs at different
levels of abstraction, different opinions were expressed, possibly because of the dissimilar
mathematical background of the participants. The majority of the subjects claimed that
each proof contained the right amount of information on the progress of the proof, given
the corresponding detail level. In particular, proofs declared as abstract were indeed seen

Computer-Supported Mathematical Theory Development’04 57

Figure 3.6: The most detailed proof version of the commutativity of addition theorem.

as abstract and those declared as detailed were indeed seen as more detailed. However,
there were cases where participants claimed that the omission of some steps would be
desirable, though their presence was not irritating.
Similarity to textbook proofs: The participants, based on their experience in math-
ematical literature, estimated that the presentation of the NL proofs approximated the
presentation of proofs found in mathematical textbooks.

5 Current State and Further Work

ClamNL has been developed as the first author’s undergraduate project. It offers many
opportunities for improvements and extensions, which we will discuss next.

The next step in the development of NL versions of machine-oriented proofs would
be the generation of partial NL proofs of unsuccessfully proven theorems. Proof pre-
sentation systems developed so far, require their respective theorem provers to compute
complete proofs. Our idea is to verbalise a formal proof until the point that it has been
successfully developed and then try to explain in natural language the reasons that lead
to a fallible proof, and if possible, suggest patches about how a certain failure can be
overcome in natural language.

Currently, we are also investigating to adapt our verbalisation system so that it can
handle IsaPlanner[8]-generated proof plans. IsaPlanner is a generic framework for proof

58 Alexoudi, Zinn, Bundy: English Summaries of Mathematical Proofs

planning build upon the interactive theorem prover Isabelle that facilitates reasoning
techniques to conjecture and prove theorems automatically. In constrast to Clam that
limits the implementation of partial NL proofs, IsaPlanner supports the generation of
both complete and incomplete proof plans. Furthermore, IsaPlanner is available to a
wider audience compared with Clam, which is nowdays used by a limites number of
people.

As far as the verbalisation of complete proofs is concerned, the current system gen-
erates various abstract NL proofs that contain only mathematically ‘interesting’ parts
of the proof, rather than the complete proof in terms of low-level steps. At the mo-
ment, the ‘interestingness’ of proof steps is system-defined. Thus, the next step would
be to modify it so that users would be able to obtain customised versions of NL proofs
by defining what they consider to be interesting, depending on their knowledge and
interest.

The provision of user interaction is an important feature in systems of this nature.
The user can interact with the system either by requesting the number of available NL
versions of the proof of some theorem or by requesting a certain proof of a theorem.
However, the interaction between the user and the system is managed through a unix
shell. This is clearly a limitation that we would like to resolve in future by designing a
simple and user-friendly interface. Furthermore, although the proofs are expandable, in
the sense that some are more detailed than others, hypertext-based versions of proofs
would be extremely useful, since users could unfold parts on the fly rather than look for
another version of the proof.

Finally, additional features would be the gen eration of multilingual proofs and proofs
of different presentation styles targeted at two different groups of users. A mathematical-
style for users that are interested in mathematical aspects of the proof of a given theorem
and a compositional-style that will target people interested in the process of constructing
proofs.

6 Conclusion

This paper presents and proposes a multi-step approach for the presentation of machine-
oriented proofs. The automatic generation of NL versions of formal proofs aims to
improve the readability and comprehensiveness, as well as the usefulness of machine-
found proofs and extend/enable their availability to a wider audience.

The generation of human-readable proofs at different levels of abstraction can be
succeeded using the proof planning technique. Proof plans offer an ideal solution, since
they provide high-level presentation and low-level interpretation of proofs. In addition,
the process of a formal proof abstraction and the availability of proofs at different levels
of details is enhanced by the notion of interestingness. Currently, the interestingness of
proof steps is system defined, but in future we aim to a more dynamic and interactive
approach to proof presentation and explanation.

Computer-Supported Mathematical Theory Development’04 59

Bibliography

[1] M. Alexoudi. English Summaries of Mathematical Proofs, 4th Year Undergraduate
Project Report. School of Informatics, University of Edinburgh, 2003.

[2] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuţa, and D. Vāsaru.
A Survey on the THEOREMA Project. In ISSAC ’97. Proceedings of the 1997
International Symposium on Symbolic and Algebraic Computation, pages 384–391.
ACM Press, 1997.

[3] A. Bundy. A Science of Reasoning. In J. L. Lassez & G. Plotkin (Eds.), Compu-
tational Logic: Essays in Honor of Alan Robinson. The MIT Press, 1991.

[4] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam System.
In M. E. Stickel, editor, Proceedings of the 10th International Conference on Auto-
mated Deduction, volume 449 of LNAI, pages 647–648, Kaiserslautern, FRG, July
1990. Springer Verlag.

[5] D. Chester. The Translation of Formal Proofs into English. Artificial Intelligence,
7:261–278, 1976.

[6] Y. Coscoy. A Natural Language Explanation for Formal Proofs. In Proceedings of
the 1st International Conference on Logical Aspects of Computational Linguistics
(LACL-96), volume 1328 of LNAI, pages 149–167, Berlin, September 23–25 1997.
Springer.

[7] B. I. Dahn and A. Wolf. Natural language presentation and combination of au-
tomatically generated proofs. In Frontiers of Combining Systems (FroCos), pages
175–192, 1996.

[8] L. Dixon and J. D. Fleuriot. IsaPlanner: A Prototype Proof Planner in Isabelle.
In CADE, volume 2741 of Lecture Notes in Computer Science, pages 279–283.
Springer, 2003.

[9] A. Felty and D. Miller. Proof Explanation and Revision. Technical Report MS-
CIS-88-17, University of Pennsylvainia, 1987.

[10] A. Fiedler. P.rex : An Interactive Proof Explainer. In Rejeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, Automated Reasoning — 1st International
Joint Conference, IJCAR 2001, number 2083 in LNAI, pages 416–420, Siena, Italy,
2001. Springer Verlag.

[11] A. M. Holland, R. Barzilay, and R. L. Constable. Verbalization of High Level
Formal Proofs. In American Association for Artificial Intelligence, 1999.

[12] X. Huang and A. Fiedler. Presenting machine-found proofs. In Proceedings of the
Thirteenth International Conference on Automated Deduction (CADE-96), volume
1104 of LNAI, pages 221–225, Berlin, July 30–August 3 1996. Springer.

[13] L. Lamport. How to Write a Proof. Technical Report TR 94, Digital Systems
Research Center, February 1993.

60 Alexoudi, Zinn, Bundy: English Summaries of Mathematical Proofs

[14] M. White and T. Caldwell. EXEMPLARS: A Practical, Extensible Framework for
Dynamic Text Generation. In Eduard Hovy, editor, Proceedings of the Ninth Inter-
national Workshop on Natural Language Generation, pages 266–275. Association
for Computational Linguistics, New Brunswick, New Jersey, 1998.

Computer-Supported Mathematical Theory Development’04 61

The Use of Data-Mining for the Automatic Formation of

Tactics

Hazel Duncan1 Alan Bundy John Levine Amos Storkey2

School of Informatics, University of Edinburgh, UK

Martin Pollet3

Fachrichtung Informatik, Universität des Saarlandes, Germany

Abstract

The aim of this project is to evaluate the applicability of data-mining techniques
to the automatic formation of tactics from large corpuses of proofs. We data-mine
information from large proof corpuses to find commonly occurring patterns. These
patterns are then evolved into tactics using genetic programming techniques.

1 Motivation

Within the field of automated deduction, the huge search spaces involved in finding
correct proofs means that fully automated theorem provers are not as advanced as it
was once thought they would be by this time. For example, Newell and Simon claimed
that a computer would “discover and prove an important new mathematical theorem” by
January 1st 1968 [Newell & Simon]. An important advance in theorem proving was made
by Robin Milner when he introduced the notion of tactics. The introduction of tactics
helped the field of theorem proving by guiding search, this project aims to build upon
that success by implementing a method to allow tactics to be formed automatically.
Tactics are functions from goals to subgoals whcih can fail raising appropriate error
messages. Robin Milner used tactics in his automatic proof assistant theorem prover
Edinburgh LCF [Milner], which initiated interactive theorem-proving and the proof-
assisting tradition. LCF has led to descents such as HOL, ISABELLE, COQ and LEGO.

In interactive theorem proving systems, a theory is viewed as collection of definitions,
theorems and proofs, as well as tactics. An important aspect for the development of
a theory is therefore not only the formalisation of a theory, but also the reasoning
techniques for proofs, that is, the tactics. With this project we hope to contribute to
the development of theories by providing a way to automate the formation of tactics
using data-mining, we hope this would lead to new tactics for more complex theorems.
This would then, in turn, aid the development of the formalisation of theories.

In order to do this, usable proof corpuses have been chosen and transformed into a
suitable format for the data-mining.

1Work supported by the European Commission IHP Calculemus Project grant HPRN-CT-2000-00102
and EPSRC grant GR/S76328/01

2Work supported by a fellowship from Microsoft Research, Cambridge.
3Work supported by the European Commission IHP Calculemus Project grant HPRN-CT-2000-00102

62 Duncan et al.: The Use of Data-Mining for the Automatic Formation of Tactics

We have adapted probabilistic reasoning techniques, such as Variable Length Markov
Models (VLMM) [VLMM] and Log Linear Models (LLM) [LLM], to the identification
of rule sequences that are useful for predicting the next rule. These techniques are used
to discover patterns existing in the proof corpuses.

These patterns can be viewed as simple tactics, which are adapted using Koza-style
genetic programming [Koza]. Using this, we will generalise these simple tactics into more
complex ones, e.g. containing repetition and branching. This requires the development
of an evaluation function for scoring the evolving tactics.

The new generalised tactics will be evaluated, e.g. by applying them to a set of test
theorems and comparing their performance to the available alternatives.

2 Related Work

There have been several previous attempts to learn new proof methods or tactics from
example proofs. Also of interest to us are systems which learn and predict patterns, this
has been particularly common in the bioinformatics community.

In his PhD project at Edinburgh, Bernard Silver applied techniques of explanation-
based learning to the automated learning of proof methods for equation solving [Silver].
His Learning-Press system analysed successful solutions to equations and generalised
these solutions to form methods for guiding the Press equation solving system. In this
way, he was able to automatically rediscover simplified versions of many of the previously
hand-coded methods of Press.

Ron, Singer and Tishby created a distribution learning algorithm for Variable mem-
ory Length Markov Models [Ron et al]. These processes can be described as a subclass
of probabilistic finite automata (PFA). Though hardness results are known for learning
distributions generated by general probabilistic automata, they prove that the algo-
rithm they present can efficiently learn distributions generated by PFAs. In particular,
they show that, for any target PFA, the KL (Kullback-Liebler)-divergence between the
distribution generated by the target and the distribution generated by the hypothesis
the learning algorithm outputs, can be made small with high confidence in polynomial
time and sample complexity. The learning algorithm is motivated by applications in
human-machine interaction. As with our project, they looked at data which has a short
memory property, i.e., consider the empirical probability distribution on the next symbol
in a sequence given the preceding symbols, then there exists a length L (memory length)
such that the conditional probability distribution does not change substantially if we
condition on preceding subsequences of length greater than L. These can form Markov
models of order L>1, they give efficient procedures both for generating sequences and
for computing their probabilities.

More recently, Kerber, Jamnik, Pollet and Benzmüller have applied the techniques of
least general generalisation to a family of similar proofs to learn new proof methods for
various domains [Kerber et al]. They present a technique for automated learning within
mathematical reasoning systems. In particular, this technique enables proof planning
systems to automatically learn new proof methods, from well chosen examples of proofs
that use a similar reasoning pattern, to prove related theorems. Their technique consists
of a representation formalism for methods and a machine learning technique which can

Computer-Supported Mathematical Theory Development’04 63

learn methods using this representation formalism. They present an implementation
of this technique, called LearnΩMatic, which adds new methods to the Ωmega proof
planner. Methods are represented using a regular grammar over individual proof steps
and previously learned methods, allowing a hierarchical collection of methods. Note
that this technique requires all the proofs in the family to be examples of the learned
method.

John Levine and David Humphreys [Levine & Humphreys] developed L2Plan (learn
to plan), a genetic programming based method for planning. Their system represents
control knowledge as a policy and learns using Genetic Programming. The program’s
crossover and mutation operators are augmented by simple local search. L2Plan was
able to produce policies which solved all the test problems it was given, outperforming
hand-coded policies written by the authors. The genetic programming used for this
would be well suited to our task, randomly generating an initial population and then
evaluating their fitness against our test set may well produce results that would be
difficult to find using other methods.

3 Outline

Automatic learning by reasoning systems is a difficult and ambitious problem. Our work
demonstrates one way of starting to address this problem, and by doing so, it makes
several contributions to the field.

1. Although machine learning techniques have been around for a while, they have
been relatively little used in reasoning systems. Making a reasoning system learn
proof patterns from examples, much like students learn to solve problems from
examples demonstrated to them by the teacher, is hard. Our work makes an
important step in a specialised domain towards a proof planning system that can
reason and learn.

2. Proof methods have complex structures, and are, hence, very hard to learn by the
existing machine learning techniques. We approach this problem by abstracting
only as much information from the proof method representation as needed, so
that the machine learning techniques can handle the information. Later, after
the reasoning pattern is learnt, the abstracted information will be restored to its
original form as much as possible.

3. Unlike in some of the existing related work, we are not aiming to improve ways
of directing proof search within a fixed set of primitives. Rather we aim to learn
the primitives themselves, and to investigate whether this improves the framework
and reduces the search space within the proof planning environment. Instead of
searching amongst numerous low level proof methods, a proof planner can search
with a newly learnt proof method which encapsulates several of these low level
primitive methods. Solely using new proof methods is unlikely to be complete,
however, if old proof methods are left in place then the search space will in actual
fact grow. This suggests that using heuristics to allow new methods to be used
first may help find a proof in a shorter space of time despite a larger search space.

64 Duncan et al.: The Use of Data-Mining for the Automatic Formation of Tactics

4. Our work is also more general than the LearnΩMatic approach, because it does
not require a careful manual selection of candidates.

EvolveLearn

New Tactics

ApplyAbstract

Sequences of
Proof Steps

Examples of
Proof Other Theorems

Proofs of

Common Patterns

Figure 3.1: The structure of our approach to learning proof methods.

Figure 3.1 represents the structure of our approach. We begin with a large proof
corpus of existing proofs which we abstract to sequences of proof steps. We learn
commonly occurring patterns from these abstracted proofs using data-mining and prob-
abilistic techniques. These patterns are evolved using genetic programming to form new
tactics which can be applied to find proofs of other theorems.

4 Data-Mining the Proof Corpuses

4.1 Choosing the Corpus

A suitable corpus of proofs to be used in this project has been chosen to meet precise
requirements. The option remains to include other corpus(es) at a later date.

1. It is stored in electronic form, so that it is available for Data-Mining

2. It is sufficiently large to contain many examples of multiply occurring patterns of
proof

3. There is an appropriate diversity of kinds of proof steps, i.e., sufficiently different
kinds of proof steps that patterns can be identified, but not so much diversity
that patterns do not recur. Note that the appropriateness of diversity is relative
to corpus size: the larger the diversity, the larger the corpus required for the
re-occurrence of patterns.

4. The corpus lends itself to a suitable abstraction. We are currently only using the
rule name at each proof step. The option remains to include more information.

Note first that proofs generated by resolution-style theorem provers are, unfortu-
nately, mostly unsuitable because of requirement 3 above: typically only one or two

Computer-Supported Mathematical Theory Development’04 65

rules of inference are used. We could try to differentiate rule applications by the for-
mulae they manipulate, but these formulae are generated during the proof search and
are too diverse, e.g. millions of derived clauses. In addition, it has been suggested that
interactive theorem provers may be more likely to yield interesting patterns due to the
structure that people insert in their proofs. Conversely, it has also been suggested that
a wholly automatic theorem prover may yield patterns as it searches for proofs in a
deterministic way.

Isabelle is an interactive theorem prover developed at Cambridge [Isabelle] which
satisfies the necessary criteria. It also has some inbuilt commands which allow the proof
of a theorem to be extracted.

Mizar was developed at the University of Bialystock in Poland as an aid to the
development of mathematical articles for formalized maths [Mizar]. Mizar also meets
the necessary requirements and has been investigated as a usable corpus.

4.2 Markov Models

Once the proof corpuses have been put into a suitable format, probabilistic reasoning
techniques are applied to identify patterns within the proof structures, these patterns
form the basis for the new tactics.

Markov Models are a probabilistic technique which calculate the probability of some-
thing, (in our case, a proof step), given what appears before. The main advantage of
using Variable Length Markov Models (VLMMs) is that the number of things that come
before is not fixed, i.e., it has memory of variable length. They seem to offer a good
solution to the task of identifying patterns. Using the proof corpus, a VLMM is trained
and then used to predict the next proof step. One problem of more basic counting tech-
niques is that longer strings would be prejudiced against due to the fact that they are
less likely to appear simply by chance. For example, a ‘pattern’ of rule A followed by
rule B would possibly occur (say) 15 times simply by chance, but a pattern of ABCD-
CBC should be considered to be significant if it happened to occur 4 times. The very
nature of VLMMs means that this problem would be simply dealt with.

Although there is existing software which deals with pattern formation and Variable
Length Markov Models the software was very specifically for DNA pattern construction
and some experiments and investigation proved that adapting this software would be
prohibitively complex.

4.3 Extraction of Patterns

One of the major problems encountered with the pattern discovery so far is the case splits
in the proofs. Although many pieces of software exist for identifying patterns in strings
(most commonly for DNA sequences, but also for more general strings) which could
be adapted for use with proof structures, we have been unable to identify any existing
software or unimplemented theoreticized techniques which identify patterns within tree
structures. It was suggested that case splits could be ignored or simply treated as a
special case, i.e., a “split token”, however, the high frequency of occurrence of some sort
of branching structure within a proof means that in this case we may well lose many
interesting patterns.

66 Duncan et al.: The Use of Data-Mining for the Automatic Formation of Tactics

The technique decided upon was to split the proofs into separate strings and give
weights accordingly, i.e., all the steps at the end of any branch have weight 1, before
each split the weights are given as 1/branches ∗ weight after split – so a tree which
has 3 two-way splits would have a weight of 1 at the end of each branch, 0.5 on every
branch between the last two splits, 0.25 after the first split and 0.125 before there is
ever a split point. The treatment of branching is exemplified in Figure 4.2. The result
is a list of tuples of the form

[[[0.5, A], [0.5, B], [0.5, C], [1, D], [1, F]], [[0.5, A], [0.5, B], [0.5, C], [1, E], [1, G]]] (1)

These weights are incorporated simply at the point where the Markov Model is
updated. It would be much more elegant to have software which learned Markov models
directly from the tree structures but this has not yet been found.

A0.5 A0.5

0.5 B B

CC

D E

GF

0.5

1

11

1

0.5

0.5

A

B

C

D E

F G

Figure 4.2: Example proof steps with split

The technique currently being used works in a probabilistic-style way, based on
the same principles as VLMM. For each point in the proof a number representing the
likelihood of that step occurring given the previous steps is calculated. This is calculated
by multiplying the number of times that step occurs in the corpus by the weight given
to the particular sequence. This means that the sequence [A,B,C,D] is calculated
in terms of D. P (D|[A,B,C]) = O(D) ∗ W (where O(D) is the number of times D
occurs and W is the weight attributed to D). In such a string P (D|A) and P (D|[A,B])
would also be calculated. If any of these strings have occurred before, (for example if
P (D|[A,B,C]) is already in the database), then the calculated probability is added to
the existing probability.

The nature of this software is such that a lot of redundancy is created - however,
these redundancies ensure that any sub-part of a discovered pattern which also appears
elsewhere will appear as a pattern in its own right as it will have a higher probability.

Finally a threshold is specified and any patterns which have a probability above this
threshold are returned. Although any patterns which are directly subsumed by others
with the same probability (i.e., they do not appear other than in the longer pattern)
are deleted.

These patterns are already sequences which commonly occur within a proof. As such,
they already describe a part of the proof and can be thought of as simple probabilistic
tactics.

Computer-Supported Mathematical Theory Development’04 67

5 Generation of Tactics

5.1 Grammar

Some care is required over the choice of the tactic language. The choice ranges from
regular grammars, via a limited set of tacticals to a general programming language,
such as ML. A parsimonious language will be better suited to genetic programming, e.g.
a limited set of tacticals. Moreover, the language must not require information that
cannot be obtained by analysis of the proof corpus. For instance, it is no use including
while-loops or if-then-else, if their conditions cannot be identified.

Non-conditional forms of repetition and non-determinism must be used instead. We
have therefore decided to represent generalised patterns in the following language L
which is defined as:

t ∈ L for tactic identifiers t
m ∈ L for macro identifiers m
[L1, L2] ∈ L
(L1 ∨ L2) ∈ L

for L1, L2 ∈ L
(L1 ∧ L2) ∈ L
L? ∈ L for L ∈ L

The tactic identifiers denote the tactics which appear in the extracted proof se-
quences. Macro identifiers are used as abbreviation for a pattern L ∈ L. The operators
have the semantics of tacticals. The term [L1, L2] is interpreted as sequencing (L2 is
applied after L1), L1 ∨ L2 stands for a disjunction (either L1 or L2 is applied), and
L1∧L2 has the semantics that L1 is applied to one subgoal and L2 to the other subgoal.
The term L? denotes an arbitrary number (greater than one) of repetitions of L.

5.2 Evolving Tactics

The patterns constructed by the probabilistic methods described previously will only
consist of fixed length combinations of particular rules. This does not reflect the full
generality of hand-built tactics. For instance, recursion might be used to capture the
repeated application of a particular sub-tactic a variable number of times. Or condi-
tionals might be used to capture variations in the particular rule combinations. The use
of macros allow sub-routines which may occur to be identified.

Generalisation of the extracted sequences is a computationally time consuming prob-
lem. In our case it is even more difficult since the result is not expected to be one gen-
eralisation describing all the patterns but an unknown number of generalisations which
describe different classes of typical patterns. There are two competing criterions to be
fulfilled:

1. A generalisation should subsume many sequences.

2. A generalisation should subsume only sequences of one class.

We approached this problem from a different perspective. Instead of trying to find
‘the best’ set of generalisations which is generated by an computationally expensive
algorithm, we gradually produce ‘better’ generalisations using techniques from genetic
programming. This approach implies that the resulting generalisations may be different

68 Duncan et al.: The Use of Data-Mining for the Automatic Formation of Tactics

in different runs and thus could produce generalisations which either subsume many
sequences (criterion 1), differentiate between more classes (criterion 2), or lie in between.

To generalise our initial tactics in this way, we use two approaches, a pairwise
crossover of our patterns and traditional genetic programming.

Our pairwise crossover of patterns works by randomly choosing two patterns from
our discovered patterns and looking for points of combination - suitable points for ∧
branch introduction, candidates for the ? operator, ∨ differences in patterns and (where
one pattern is completely contained in the other) introduction of macros. New patterns
formed are scored against the original pattern set, they are kept if they outperform their
predecessors and discarded otherwise. The score for a new pattern is generated with
a positive for every old pattern it describes and a negative for members of an ∨. This
prevents a simple disjunction over all possibilities being accepted as a ‘good’ tactic.

John Koza explains the principals of Genetic Programming in his book [Koza].
Koza’s work describes and illustrates genetic programming with 81 examples from vari-
ous fields, of particular interest is the ‘Evolution of Subsumption’, which will be similar
to the strategy we wish to use.

This approach genetically breeds populations of computer programs to solve prob-
lems by executing three steps:

1. Generate an initial population of random tactics made up of our grammar and
our proof step names. Weights are given to the grammar operations and to the
likelihood of moving straight on to another step in order to generate a more ‘sensi-
ble’ tactics (a tactic containing only (say) 4 proof steps but 10 of our grammatical
operations is unlikely to be useful).

2. Iteratively perform the following sub-steps until the termination criterion has been
reached:

(a) Execute each program in the population and assign it a fitness value

(b) Create a new population by:

(i) Reproduction: Copy existing tactics to the new population

(ii) Crossover: Create two new tactics by genetically recombining randomly
chosen parts of two existing tactics

3. The best few tactics at the time of termination is deemed to be the result of the
genetic programming. This solution is produced after a time limit. The ‘best
few’ is designated as the fewest high-scoring tactics which completely describe the
patterns generated by data-mining.

Although Koza describes his technique in terms of programs, functions and termi-
nals, our technique simply an application of this applied to tactics, proof steps and oper-
ations from our grammar. Our scoring function is repeated from the pairwise crossover
approach.

We use two forms of genetic programming with the only difference being the initial
population - we currently use a set of randomly generated tactics for one form and the
generated patterns for the second.

Computer-Supported Mathematical Theory Development’04 69

6 Feasibility Tests

One of the concerns about the project was that even using human-directed proofs, a
slight change in the order of steps being applied may well lead to a pattern being missed.
It was decided that it would be worthwhile to assign each of the rules of Isabelle’s HOL
library to a class (such as ‘classical logic’ or ‘quantifiers and descriptions’) and then
look for patterns of classes. This approach seemed likely to give some useful results
because of techniques (or perhaps habits) used by both people and automatic provers
when looking for a proof. It was suggested that there is a tendency to perform steps
from the same class together. For instance, it is often the case that people begin by
using all possible rewrite rule to simplify the goal as much as possible. It appears likely
that many theorem provers may also use a similar principal for heuristics.

A hand comparison of a number of similar proofs has been carried out. The intention
of this was to examine if the similarities in the theorem translated into a similarity in
the proof. For the most part, it was found that this was the case, however, the examples
studied were simple and it is very possible that two complex theorems proven by two
different people may well give very different proofs, even if the statement of the theorems
are almost identical. This has led to discussion about whether it would be worthwhile
to try to recognize a pattern even if the order of two steps were reversed.

7 Conclusion

The project is progressing within the expected time frame and current results are en-
couraging.

We have already implemented software which finds patterns from the proof cor-
pus(es) as described above. We have discovered an encouraging number and range of
patterns within the proof corpus, however this varies with the particular part of the
corpus we use and with the various thresholds we define. We have implemented the
feasibility tests described above and have found that results reflect our expectations for
these.

We have implemented the evolutionary programming techniques described. These
implementations have already provided some results which are under analysis.

We already have some complete tactics from the previous steps and have utilised
graphical techniques to allow examination of the statistics. These graphical techniques
compare factors such as time (that the evolution step is allowed to run) against the
improvement in tactics (at this stage this is measured by the score assigned to the tactic
by the scoring function) and the proportion of the corpus explained by the new tactics
from each of the evolutionary steps. These graphical models allow us to test different
variables and thus refine the weighting and thresholds that are required at various stages
of the project.

8 Future Work

As stated, the intention of the project is to allow the automatic formation of tactics to
be used in proof planning and automatic theory formation. It is hoped that this project

70 Duncan et al.: The Use of Data-Mining for the Automatic Formation of Tactics

will allow a way to provide tactics which will help guide proof search and will reduce the
amount of human intervention needed for theory formation. If successful, this procedure
should be able to be integrated into automatic theorem provers and should help reduce
the search necessary to find a successful proof. This, in turn, should help improve the
success rate of the theorem prover. Theorem provers generally have a maximum time
for finding a successful proof so improving the search direction should allow an increase
in the number of theorems which can be proved before a timeout occurs.

On a much more localized view, the project would be viewed to be a success if we
could demonstrate that significant patterns had been found and that sensible tactics had
been formed using these patterns. It would be hoped that tactics could be discovered
which made a difference in the search space required to find proofs of a certain type –
or even the likelihood of certain types of proof succeeding. Some principles can already
be noticed using intuition and common sense, such as the principle that rewrite rules
generally occur within a cluster of rewrite rules, and that many proofs begin with the
elimination of quantifiers. It would seem a reasonable hope that tactics representing
these (or similar) observations could be found.

There are many ways to check the successfulness of the project at various stages. At
the final stage it would seem appropriate to evaluate the produced tactics by inspecting
them for mathematical “sensibility”, i.e., do they make sense within the context of the
theorems studied? Do they seem like a sensible approach? A more concrete evaluation
would be to enter these new tactics as heuristics within an automatic theorem prover
and look for any changes/improvements in its performance.

At a much earlier stage, one suggested evaluation was to see if the patterns found
show any expected results, such as existing tactics. This would be expected to occur
when using the Isabelle library (for example) as theorems are used as proof steps, if
each of these theorems are broken up into their proof traces and so on until the low level
HOL logic theorems are reached, then we would expect the proof traces of commonly
used lemmas to show up as frequently occurring patterns.

The main step remaining is to test the discovered tactics, this introduces the problem
of what we define as a success. There is no reason that our discovered tactics will
terminate at the end of the proof so this cannot be used as a criteria. However, it
appear that being able to successfully apply each step of a tactic sequentially would
itself indicate some measure of success for the tactic.

There is no reason why the technique outlined here could not be used with a number
of systems and it would be useful to test how well it applies to different theorem proving
systems. In particular, it would be interesting to see how noticeable the difference is
between types of tactics discovered from different systems.

Most of the possibilities suggested for further work at this stage involve the amount
of data abstracted. It would be interesting to see if other probabilistic techniques such
as LLMs could be used to include information about the state of the proof goal when
the new tactics should be applied.

Computer-Supported Mathematical Theory Development’04 71

References

[LLM] A. Berger. The improved iterative scaling algorithm: A gentle introduction,
1997.

[Bundy] Alan Bundy. A science of reasoning. in J.-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson, pages 178-198, MIT
Press, 1991. Also available from Edinburgh as DAI Research Paper 445.

[VLMM] Aphrodite Galata, Neil Johnson, and David Hogg. Learning variable length
Markov models of behaviour. Computer vision and image understanding: CVIU,
81(3):398-413,2001.

[Milner et al] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF - A
mechanised logic of computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[Kerber et al] M. Jamnik, M. Kerber and M. Pollet. Automatic learning in proof plan-
ning. In F. van Harmelen, editor, Proceedings of 15th ECAI. European Conference
on Artificial Intelligence, 2002.

[Koza] J. R. Koza. Genetic programming: On the programming of computers by means
of natural selection. The MIT Press, 1992.

[Levine & Humphreys] John Levine and David Humphreys. Learning action strate-
gies for planning domains using genetic programming.

[Silver] B. Silver. Using meta-level inference to constrain search and to learn strategies
in equation solving. PhD thesis, Dept. of Artificial Intelligence, University of
Edinburgh, 1984. Published as a book by North Holland.

[Newell & Simon] H. A. Simon and A. Newell. Heuristic problem solving: The next
advance in operations research. Operations research, 6(1), 1958.

[Isabelle] L. C. Paulson. Isabelle: A generic theorem prover. Springer-Verlag, 1994.

[Ron et al] D. Ron, Y. Singer and N Tishby. The power of amnesia: Learning proba-
bilistic automata with variable memory length, Machine Learning,25, 1996.

[Mizar] P. Rudnicki. An overview of the Mizar project. In 1992 Workshop on Types
for Proofs and Programs, Bastad, 1992. Chalmers University of Technology. See
http://mizar.org for up-to-date information on Mizar and the Journal of Formal-
ized Mathematics.

Computer-Supported Mathematical Theory Development’04 73

CORE and HULL Constructors in

Gödel’s Class Theory

Johan G. F. Belinfante and Tiffany D. Goble 1

Georgia Institute of Technology, Atlanta, GA 30332–0160 (U.S.A.)
belinfan@math.gatech.edu

Abstract

The GOEDEL program, a computer implementation of Gödel’s algorithm for class
formation in MathematicaTM was used for formulating definitions and discovering
theorems about topology and its generalizations, working within Gödel’s class the-
ory. A general characterization of CORE[x] and HULL[x] functions discovered in
the course of this work is the primary focus of this paper.

1 Introduction

Computers are not only valuable for automated reasoning and for formal verification
in mathematics, but can also contribute significantly to the formulation of definitions,
simplifying the statements and the proofs of theorems, finding generalizations, and can
sometimes even lead to the discovery of new theorems. This is true in part because the
very fact that one is using a computer will suggest natural questions that otherwise may
not have been considered, and also in part because computers think in ways that are
distinctly non-human. Larry Wos has aptly expressed this in the following words:

“The human mind will never be replaced, ... but the advantage of computers
is their utter lack of preconceptions. They can follow paths that are totally
counterintuitive.” (Chang, [2004])

Since set theory can be relied upon to formulate practically everything of interest
in modern mathematics, it is arguably worthwhile to expend the considerable effort
needed to develop a substantial body of standard mathematical facts which can serve as
a foundation for automated reasoning involving set theory, building on Robert Boyer’s
seminal observation that automated reasoning in set theory can be performed within first
order logic by using Kurt Gödel’s reformulation of the von Neumann-Bernays axioms.

The first author’s GOEDEL program is used for formal verification and McCune’s
Otter program is used for automatic proof search. The intention is to use the GOEDEL

program primarily to discover how to formulate definitions and theorems, and to explore
what needs to be proved, and then later to go back and find clean proofs of these results
using Otter. Since the GOEDEL program itself does not produce explicit proofs, results
obtained with this program will be called derivations rather than proofs, even though
such derivations often are in fact more detailed than what passes for a proof in common

1This research was supported on NSF ITR contract DMS 0312618.

74 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

parlance. A current version of the GOEDEL program and a large number of sample
notebooks illustrating its use are available on the first author’s website:

http://www.math.gatech.edu/~belinfan/research/

In the past year, some preliminary successes were achieved by the authors using the
GOEDEL computer program to derive basic theorems of point-set topology and its gener-
alizations. This work was in part inspired by a remarkable paper by McCune and Wick
([1989]) in which Otter was used to prove some theorems of point-set topology before
a completely adequate set-theoretic basis was available. Another early effort (Farmer
[1991]) to apply automated reasoning to topology produced proofs of two theorems in
metric-space topology. Considerable efforts have also been made (Bancerek, [1997])
using Mizar to formalize topological notions for the purpose of computer verification.
There have undoubtedly been other pioneering efforts to apply computers to reasoning
in topology, and it is sincerely hoped that there will be many more in the future.

Unlike Otter, the GOEDEL program is not an automated reasoning program, and does
not produce explicit proofs, but it does contain numerous rewrite rules for simplifying
descriptions of classes and assertions about them, and there is a (fairly primitive) con-
struct called SubstTest that can be used to carry out deductions by hand. This is one
of several tools that permit one to use existing rewrite rules to deduce new rewrite rules,
thereby providing a means for the program to gradually evolve into an ever increasingly
powerful reasoning assistant. Some theorems about the T1 and T2 separation axioms,
the cofinite topology, and compactness were among the results that were derived using
GOEDEL. Further details about these and other applications to topology can be found
on the first author’s website. This paper will focus on just one aspect of this ongo-
ing research, a generalization of Kuratowski’s characterization of topologies via closure
operators that was discovered in the course of our work.

Because our work is being done within the framework of the Gödel-Bernays class
theory, the collections of sets that can be considered do not have to be sets. The axiom of
regularity and the axiom of choice are not assumed to hold unless explicitly mentioned.
Generalizing topological ideas to proper classes is not just an idle pastime. In ordinal
number theory, for example, an important concept is that of a full (or transitive) class.
A class is full if all its members are subsets. The class FULL of all full sets is technically
not a topology because it is a proper class, but it shares some properties of a topology. In
particular, the class of all full sets is closed under arbitrary unions, and under arbitrary
intersections, too. The class H[FINITE] of hereditarily finite sets, for example, can
be characterized as the interior of the class FINITE of finite sets with respect to this
pseudo-topology.

The needs of automated reasoning raise many mathematical questions that are not
readily answered in the standard mathematical literature. This is particularly true in
situations where the standard literature deals only with the case of sets and is silent on
the issue whether sethood is really necessary. Some of the issues requiring attention are
just details that can be readily resolved. For example, upon proving a standard result
of the form A ⇒ B, one might wish to add a rewrite rule that automatically rewrites
A to B. Doing so would only be justified if the converse implication also holds, forcing
one therefore to think about whether the converse is true even in situations where the

Computer-Supported Mathematical Theory Development’04 75

converse statement might not otherwise be particularly interesting. Sometimes, however,
genuinely interesting issues are brought to one’s attention in this fashion. In the course
of the research reported in this paper, a number of interesting mathematical questions
arose for which the authors were unable to provide entirely satisfactory resolutions.
Some of these open questions will be mentioned as we go along.

2 Notation

In the Gödel class theory, equality and the membership predicate ∈ are taken as primitive
undefined concepts, subject to various axioms, and everything is a class. By definition,
a class is a set if there is a class to which it belongs. Classes that are not sets are called
proper classes. The argument leading to Russell’s paradox can be used to show that
Russell’s class of all sets that do not belong to themselves is a proper class. The axiom
of replacement implies that any subclass of a set is a set, and from this one can deduce
that the class V of all sets must also be a proper class. Another familiar example of a
proper class is the class Ω of all ordinals.

Sets are sometimes called small classes, the idea being that all the known examples of
proper classes are extremely large. This notion is reinforced by the axiom of replacement
which implies that any subclass of a set is a set. But it is somewhat embarrassing
that one can not even show for example that every proper class contains an infinite
subset. This open question came up in the course of dealing with theorems about finite
topological spaces. The natural question arose whether one could simply add a rewrite
rule that transforms the statement P[x] ⊂ FINITE to x ∈ FINITE. These statements are
of course trivially equivalent when x is a set because any set belongs to its power set,
but to avoid a conditional rewrite rule, one really wants to know whether sethood is
needed. The general case amounts to the question whether a proper class must always
contain an infinite subset. (A similar question, whether an infinite set must contain a
countable subset, is known to require an application of the axiom of choice.)

Because the Zermelo-Fraenkel version of set theory is the one most familiar to most
mathematicians, proper classes are used rather sparingly in the literature. Even authors
(Rubin [1967], Mendelson [1987]) that do embrace the NBG axioms for class theory
generally mention proper classes only to convince the reader that the paradoxes of naive
set theory are resolved, but rarely take full advantage of constructions involving proper
classes. Since Gödel’s algorithm (Gödel, [1940]) routinely produces such constructions,
proper classes feature prominently in our work. For this reason it is appropriate to
review some basic proper classes that will be used in the sequel.

In addition to the proper class V, there is another proper class, the membership
relation, whose existence is postulated by one of the axioms in Gödel’s class theory.
This axiom asserts that there is a class E whose members are all ordered pairs 〈x, y〉
satisfying x ∈ y.

The class image[x,y] is defined as the range of the restriction of the relation x to
the class y. The vertical section of a relation x at a set y is image[x, {y}], where {y}
denotes the singleton of y. A relation x is thin if image[x,y] is a set whenever y is set.
Any set, of course, is thin, and the axiom of replacement is equivalent to the assertion
that all functions are thin. It can be shown that x is thin if all its vertical sections are

76 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

sets.
The class ub[x,y] of upper bounds of a class y with respect to a relation x is defined

to be the class
ub[x, y] = image[x′, y] ′,

where x′ denotes the complement of the class x. Similarly, the class lb[x,y] of lower
bounds is defined by replacing x with its inverse:

lb[x, y] = ub[inverse[x], y].

An important application of this is the formula for the intersection of a collection of
sets,

lb[E, x] =
⋂

x.

The sum class
⋃

x and the power class P[x] of a class x can be defined in terms of
the membership relation by the formulas

⋃

x = image[inverse[E], x]

and
P[x] = image[E′, x] ′.

According to the sum class and power set axioms, these are sets when x is a set. It
follows from the sum class axiom that the inverse of the membership relation is thin.

For any class x, the upper bound relation

UB[x] = (x′ ◦ inverse[E]) ′ ∩ (V× V)

is the class of ordered pairs 〈y, z〉 such that z = ub[x,y]. The lower bound relation is
defined by LB[x] = UB[inverse[x]]. In particular, the subset relation S = UB[E] is
the class of ordered pairs 〈y, z〉 such that y ⊂ z. It follows from the power set axiom
that the inverse of the subset relation is thin.

The identity relation is Id = S∩ inverse[S]. The restriction of the identity relation
to a class x is denoted by id[x]. The class fix[x] of all fixed points of x, defined by

fix[x] = {y | 〈y, y〉 ∈ x},

is related to the identity relation by

x ∩ Id = id[fix[x]].

3 Eliminating set variables

All statements in mathematics can be automatically converted by means of Gödel’s al-
gorithm into equations without set-variables, something which Alfred Tarski and Steven
Givant ([1987]) had shown could be done in theory, on the basis of a calculus of rela-
tions. This result is not limited however to the special formalism that they consider,
but can also be achieved in the more traditional setting of NBG class theory. When
this process (called assert in the GOEDEL program) is applied to a statement containing

Computer-Supported Mathematical Theory Development’04 77

quantifiers over set-variables, the statement is converted into a logically equivalent equa-
tion without quantifiers. In the current version of the GOEDEL program, the equations
that one gets are often subsequently converted by rewrite rules to simpler statements of
a non-equational nature. For example, the axiom of regularity is transformed into the
statement that the universal class is the only class that contains its own power class. It
should be noted that this technique cannot be used to eliminate quantifiers over class
variables.

A recent major discovery provides another method for eliminating set variables,
using a process that has been named reification (Belinfante, [2003]). The idea is to
associate to each constructor f[x] in the Gödel class theory the relation R of all ordered
pairs 〈x, y〉 such that y belongs to the class f[x],

R = reify[x, f[x]] = {〈x, y〉 | y ∈ f[x]}.

For each constructor f, there is a formula expressing the reification of composite con-
structors f[g[x]] in terms of the reification of the inner constructor g. These reification
rules can often serve as a substitute for Gödel’s algorithm for eliminating set variables,
with improved execution time and cleaner output. Some examples that illustrate this
technique will be presented in this paper.

In many cases the result of eliminating variables produces formulas involving function
constructions. To each relation x there corresponds a function VERTSECT[x] which
assigns to each set y the vertical section of x at y whenever the vertical section is a set.
This important constructor can be used to define many important special functions. For
example, the function POWER = VERTSECT[inverse[S]] assigns to each set its power
set, the function SINGLETON = VERTSECT[Id] assigns to each set its singleton, and the
function

BIGCAP = VERTSECT[LB[E]]

takes any nonempty collection of sets x to its intersection
⋂

x. A relation x is thin
if domain[VERTSECT[x]] = V. The relation LB[E] fails to be thin because its vertical
section at the empty set is the proper class V; the domain of BIGCAP is the class {0} ′ of
nonempty sets. In principle, any function f can be expressed as a VERTSECT,

f = VERTSECT[(inverse[E] ◦ f) ∪ (domain[f]′ × V)].

This permits one to construct f whenever formulas for inverse[E] ◦ f and domain[f]

are available.
A closely related constructor for functions is

IMAGE[x] = VERTSECT[x ◦ inverse[E]],

which assigns to each set y the image image[x,y] provided the latter is a set. For
example, the function BIGCUP = IMAGE[inverse[E]] assigns to each set its sum class,
the function IMAGE[id[x]] assigns to each set its intersection with x, and the func-
tion IMAGE[SWAP] takes x to inverse[x]. For this last function, it is generally more
convenient to work with its restriction to the class P[V× V] of all small relations,

INVERSE = IMAGE[SWAP] ◦ id[P[V× V]],

78 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

because this restriction is one-to-one; indeed, this restriction is an involution, that is, a
function which is equal to its own inverse,

inverse[INVERSE] = INVERSE.

In a later section, an application of this function to integer arithmetic will be described.
The domain of IMAGE[x] is

domain[IMAGE[x]] = P[domain[VERTSECT[x]]].

In particular, when x is thin, the domains of both VERTSECT[x] and IMAGE[x] are equal
to the universal class V. One of the most-used rewrite rules in the GOEDEL program
transforms x ◦inverse[E] to inverse[E] ◦IMAGE[x] whenever x is thin. This rewrite rule
in effect automatically replaces thin relations with functions.

While any function can be written as VERTSECT[y], not all functions can be written
in the form IMAGE[y]. For the special case that y is thin, the GOEDEL program yields a
simple characterization of such functions. In one direction, one has

(x = IMAGE[y] & thin[y]) ⇒ BIGCUP ◦ IMAGE[x] = x ◦ BIGCUP.

Conversely, if BIGCUP ◦ IMAGE[x] = x ◦ BIGCUP, and x ⊂ V× V, then x = IMAGE[y], where
y = inverse[E] ◦ x ◦ SINGLETON and y is thin.

4 Definitions of core and hull

The class core[x,y] is defined to be the union of all sets that belong to x and are
contained in y.

core[x, y] =
⋃

(x ∩ P[y]).

If x is the collection of open sets for a topological space, and if y is a subset of the space,
then core[x,y] is the interior of y. This concept is also of interest when x and y are
proper classes. For example the class of hereditarily finite sets is core[FULL,FINITE].
In general, the class H[x] = core[FULL,x] is the largest full subclass of x.

The class hull[x,y] is defined to be the intersection of all sets that belong to x and
which contain y.

hull[x, y] =
⋂

(x ∩ image[S, {y}]).

For example, if x is the collection of closed sets of a topological space, and if y is a
subset of the space, then hull[x,y] is the closure of y.

The formal similarity between the definitions of core and hull breaks down when
proper classes are considered. Since there are no sets that contain a proper class,
one has hull[x,y] = V whenever y is a proper class. This circumstance has practical
repercussions. For example, for every class x there is a smallest class tc[x] which is full
and contains x. When x is a set, the transitive closure is given by the simple formula
tc[x] = hull[FULL,x], but when x is a proper class, a slightly different construction
is required, based on the intuitive notion that a proper class can be approximated in
some sense by very large subsets. To make this vague idea more precise, some additional
definitions will be needed, which will now be explained.

Computer-Supported Mathematical Theory Development’04 79

A function f is idempotent if f◦f = f. If a function is idempotent, then every element
of its range is a fixed point: range[f] = fix[f]. It is convenient to introduce two
families of idempotent functions CORE[x] and HULL[x] each depending on a parameter x
which in principle can be any class. The function CORE[x] can be formally characterized
as the class of all ordered pairs 〈y, z〉 such that z = core[x,y] and the function HULL[x]

is the class of pairs 〈y, z〉 such that z = hull[x,y]. If x is the collection of open
sets for a topological space, then the restriction of CORE[x] to the class of all subsets
of the topological space is the interior operator. If x is the collection of closed sets
for a topological space, then the restriction of HULL[x] to the class of all subsets of
the topological space is the closure operator. Kuratowski characterized these closure
operators and showed that a topology is uniquely determined by its closure operator.

Despite the similarity of the characterizations of the functions CORE[x] and HULL[x],
some of their properties are actually quite different, and this already shows up in the
formulas used to define them. Since class formation is part of the metatheory of Gödel’s
class theory, and not part of the theory itself, the similarity of the characterizations of
these functions in terms of requirements for ordered pairs to belong to them is somewhat
misleading. Gödel’s algorithm yields an equational definition for each of these functions.
In the case of CORE[x] one obtains

CORE[x] = BIGCUP ◦ IMAGE[id[x]] ◦ POWER.

For HULL[x] one finds a rather different formula, namely,

HULL[x] = VERTSECT[(inverse[E] ′ ◦ id[x] ◦ S) ′].

It is probably worth pointing out that this formula does not actually appear explicitly
in the GOEDEL program, the reason being that from this definition one can derive the
formula

inverse[E] ′ ◦ id[x] ◦ S = inverse[E] ′ ◦ HULL[x].

The latter formula occurs as a rewrite rule that subsumes the preceding formula. A
similar result holds, by the way, for CORE[x],

inverse[E] ◦ id[x] ◦ inverse[S] = inverse[E] ◦ CORE[x].

Further dissimilarities are found in other properties of these functions. Consider for
example the domains of these functions. When y is a set, so is its power set P[y]. Since
any subclass of a set is a set, the intersection x ∩ P[y] is a set, and hence, by the sum
class axiom, z = core[x, y] =

⋃

(x∩ P[y]) is a set. Consequently, the domain of CORE[x]
is the class V of all sets. On the other hand, the intersection of a collection of sets is a
set if and only if that collection is not empty. Consequently, the domain of HULL[x] is
the class of all subsets of members of x,

domain[HULL[x]] = image[inverse[S], x].

By the axiom of replacement, it follows from this that while the function CORE[x] is
always a proper class, the function HULL[x] is a set if and only if x is a set.

The function TC = HULL[FULL] provides a method to construct the transitive closure
of any class,

tc[x] =
⋃

image[TC, P[x]].

80 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

In practice one also needs an additional formula,

tc[x] = range[iterate[inverse[E], x]],

which allows one to use induction to derive the properties of the transitive closure. Both
of these formulas hold for any class x, not just for sets.

Another important example is the family of functions

ADJOIN[x] = HULL[image[S, {x}]].

If x is a set, this is a total function which takes any set y to the set x ∪ y. When x is
not a set, the function is the empty set.

In general, the relation iterate[x, y] can be characterized (Belinfante [2003]) by
the conditions that its vertical section at the empty set is the class y, and for each
natural number n, the image under x of the vertical section at n produces the vertical
section at the successor of n. Explicitly, the following uniqueness theorem holds for
iteration:

z ◦ SUCC = x ◦ z & image[z, {0}] = y ⇒ iterate[x, y] = z ◦ id[ω],

where ω = {0, 1, 2, . . . } denotes the set of all natural numbers, and SUCC denotes the
successor function, which takes any set x to its successor succ[x] = x ∪ {x}.

5 Open questions concerning Uclosure and Aclosure

The Uclosure of any class x is the class of all unions of subsets of x,

Uclosure[x] = image[BIGCUP, P[x]].

A familiar application of this is the construction of a topology from a topological base.
Similarly, Aclosure[x] is the class of all intersections of subsets of x,

Aclosure[x] = image[BIGCAP, P[x]].

Every class x is contained in its own Aclosure and Uclosure. A class x is closed under
arbitrary intersections if it satisfies Aclosure[x] = x, and is closed under arbitrary
unions if Uclosure[x] = x. This is the case, for example, for the class invar[x] of all
sets invariant under an operation x,

invar[x] = {y | image[x, y] ⊂ y}.

Important examples include the class FULL = invar[inverse[E]], and any power class
P[x] = invar[x′ × V]. Further examples can be constructed by using formulas such as

invar[x ∪ y] = invar[x] ∩ invar[y].

The idempotent functions UCLOSURE and ACLOSURE take a set x to Uclosure[x] and
ACLOSURE, respectively:

ACLOSURE = IMAGE[BIGCAP] ◦ POWER,
UCLOSURE = IMAGE[BIGCUP] ◦ POWER.

Computer-Supported Mathematical Theory Development’04 81

Each of these functions is a HULL function:

ACLOSURE = HULL[fix[ACLOSURE]],
UCLOSURE = HULL[fix[UCLOSURE]].

It is currently not known whether the functions UCLOSURE and ACLOSURE commute. At
issue here is whether the distributive law extends to infinite unions and intersections;
can an infinite union of infinite intersections be rewritten as an infinite intersection of
infinite unions, and vice versa? A closely related question is whether fix[ACLOSURE] is
invariant under UCLOSURE, and conversely.

Since the functions CORE[x] and HULL[x] are both idempotent, their ranges and
fixed point classes are equal. In the case of CORE[x], one has

Uclosure[x] = range[CORE[x]] = fix[CORE[x]],

but for the case of HULL[x] all that has been proved at this point is that

Aclosure[x] ⊂ range[HULL[x]] = fix[HULL[x]].

It remains an open question whether the class fix[HULL[x]] is in fact always equal to
the class Aclosure[x]. Equality has been proved for the important special case that x
is a set, and also for various special proper classes. It would be desirable to have either a
general proof that these classes are always equal or else a counterexample if they are not
always equal. Another open quesion is whether the constructor Aclosure is idempotent
in general, as is known to be the case for Uclosure. If x is a set, one has

Aclosure[Aclosure[x]] = Aclosure[x],

which suffices to show that the function ACLOSURE is idempotent. Incidentally, the
closely related operation fix[HULL[x]] is known to be idempotent for arbitrary classes;
in fact,

HULL[fix[HULL[x]]] = HULL[x].

The functions CORE[x] and HULL[x] satisfy the equations

CORE[Uclosure[x]] = CORE[x],
HULL[Aclosure[x]] = HULL[x].

Thus, for example, it makes no difference if one replaces a topology by a base for the
topology in defining interiors.

One of the more fascinating properties of the function UCLOSURE is that it commutes
with IMAGE[IMAGE[x]] for any class x. A special case of this was used in the study of
relative topologies.

6 Characterizing CORE and HULL

It is convenient to express various strong versions of monotonicity in terms of the subset
relation S. A function f is monotone if

f ◦ S ◦ inverse[f] ⊂ S.

82 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

This quantifier-free statement is equivalent to the condition

∀u, v, x, y ((〈u, x〉 ∈ f & 〈v, y〉 ∈ f & u ⊂ v)⇒ x ⊂ y).

Similarly, a function is antitone if

f ◦ inverse[S] ◦ inverse[f] ⊂ S.

A function is total if domain[f] = V. A class x is hereditary if every subset of a
member is a member, that is, if image[inverse[S], x] = x]. It will be said that x

and y subcommute if x◦y ⊂ y◦x. Any relation that subcommutes with S has a hereditary
domain. Any monotone function with a hereditary domain subcommutes with the subset
relation, and conversely, any function that subcommutes with S is monotone. In other
words, the condition that a function f subcommutes with S is equivalent to saying that
it is not only monotone, but its domain is hereditary. A total monotone function f

satisfies the even stronger condition that S ⊂ inverse[f] ◦ S ◦ f, and conversely, this
condition implies that f is monotone and total. A total function which subcommutes
with the subset relation also subcommutes with the inverse of the subset relation.

For example, the domain of the monotone function IMAGE[x] is a power class,

domain[IMAGE[x]] = P[domain[VERTSECT[x]]],

and is therefore hereditary. Consequently IMAGE[x] subcommutes with S. The function
IMAGE[x] is total when x is thin; IMAGE[x] subcommutes with inverse[S] if and only
if x is thin. This fact had been proved in one direction using Otter. The discovery
that the converse holds was motivated by the desire to avoid a conditional rewrite rule
in the GOEDEL program; conditional rewrite rules slow the program down significantly.
Some additional facts did require adding conditional rewrite rules: If x is a function,
then IMAGE[x] commutes with S, and if x is a total one-to-one function, then IMAGE[x]

commutes with S.
The idempotent functions CORE[x] and HULL[x] are both monotone, and both of

them subcommute with the subset relation because their domains are hereditary. The
function CORE[x], of course, has the stronger property of being total, and therefore
subcommutes also with inverse[S], whereas this is generally not the case for HULL[x].
The other important difference between these functions is that HULL[x] is contained in
S, whereas CORE[x] is contained in inverse[S].

These properties characterize the functions CORE[x] and HULL[x]. If a monotone
idempotent function has a hereditary domain and is contained in the subset relation,
then it is a HULL function,

(f ◦ f = f & FUNCTION[f] & f ⊂ S & f ◦ S ⊂ S ◦ f)⇒ f = HULL[fix[f]].

If a total monotone idempotent function is contained in the inverse of the subset relation,
then it is a CORE function,

(f ◦ f = f & FUNCTION[f] & domain[f] = V

& f ◦ S ⊂ S ◦ f & f ⊂ inverse[S]) ⇒ f = CORE[fix[f]].

The interiors and closures of subsets of a topological space are related via relative
complementation. The result does not depend on the topology axioms. A general result

Computer-Supported Mathematical Theory Development’04 83

can be derived using the above characterization of HULL functions. For any set x there
is a relative complementation function RC[x] consisting of all ordered pairs 〈y, z〉 such
that y ∪ z = x and y ∩ z = 0.

RC[x] = DISJOINT∩ image[inverse[CUP], {x}].

This function is antitone, and is its own inverse. Note that RC[x] = 0 when x is a
proper class. Since the function CORE[y] is monotone, the composite function RC[x] ◦
CORE[z] ◦ RC[x] is monotone. The other conditions in the characterization of a HULL

function also hold, and so, applying the characterization of HULL to this special case
yields the formula

RC[x] ◦ CORE[y] ◦ RC[x] = HULL[image[RC[x], Uclosure[y]]].

Actually, a slightly more general result holds:

HULL[image[RC[x], y]] = RC[x] ◦ CORE[y] ◦ id[image[S, y]] ◦ RC[x].

The extra factor id[image[S,y]] is not needed when 0 ∈ y. For the record, we note
that this more general formula had in fact been derived by an application of reification
before the characterization of HULL had been established.

7 Applications to Topology

A topology is a set t of sets which is closed under binary intersections and arbitrary
unions, that is, a set satisfying

t = Uclosure[t],
t = image[CAP, t× t].

Any power set is a topology, as are all successor ordinals. In general, the Uclosure of
an ordinal number is the successor of its sum class. The cofinite topology for any set x
holds the empty set, and all subsets of x whose relative complement in x is finite,

Uclosure[image[RC[x], FINITE]] = {0} ∪ image[RC[x], FINITE].

In general, the class binclosed[x] of sets closed under a binary operation x is

binclosed[x] = {t | image[x, t× t] ⊂ t} = fix[S ◦ IMAGE[x] ◦ CART ◦ DUP].

Using this notation, one can write the class TOPS of all topologies as the intersection

TOPS = fix[UCLOSURE]∩ binclosed[CAP].

Note the resemblance of binclosed[x] with invar[x]. In fact, invar[x] can even
be written as binclosed[x ◦ inverse[DUP]]. It should therefore not come as much of
a surprise that binclosed shares some of the properties of invar. In particular, it is
closed under arbitrary intersections: Aclosure[binclosed[x]] = binclosed[x].

The class TOPS is closed under arbitrary intersections: Aclosure[TOPS]=TOPS. Any
set x generates a smallest topology hull[TOPS, x] that contains x. Since the class

84 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

binclosed[CAP] is invariant under UCLOSURE, it follows from the characterization of
HULL functions that

HULL[TOPS] = UCLOSURE ◦ HULL[binclosed[CAP]].

In other words, the topology generated by a set can be obtained in two steps; first one
generates a topological base, and then one applies Uclosure to obtain the topology itself,

hull[TOPS, x] = Uclosure[hull[binclosed[CAP], x]].

Another corollary is a succinct formula TOPS = image[UCLOSURE, binclosed[CAP]]

for the class of all topologies.
If t is a topology, its members are called the open subsets of the topological space

⋃

t, and their relative complements are called the closed sets. So c = image[RC[
⋃

t], t]
is the set of all closed sets. The interior of a subset x ⊂

⋃

t is core[t, x], and its
closure is hull[c, x].

If t is any topology, and x is any class, then the set

image[IMAGE[id[x]], t] = {z | (∃y ∈ t) z = x ∩ y}

is also a topology. When x ⊂
⋃

t this is known as the relative topology on the subset
x. For each open set y ∈ t, the intersection z = x ∩ y is open in the relative topology.
Since the variable t refers to a set, one can eliminate this variable, and recast the fact
that the class of topologies is invariant under the process of forming relative topologies
succinctly as follows:

image[IMAGE[IMAGE[id[x]]], TOPS]⊂ TOPS.

Carrying this process of variable-elimination to extremes, one could specialize the above
statement to the case that x is any set, and then use reification to eliminate even this
one remaining variable, yielding a completely variable-free statement,

image[IMAGE[CAP], image[CART, range[SINGLETON]× TOPS]] ⊂ TOPS.

This amounts to the assertion that TOPS is invariant under the relation obtained by
forming the union of the functions IMAGE[IMAGE[id[x]]]. This is not an ordinary
union because these functions are all proper classes, but one can nonetheless use the
reification rules to compute such nonstandard unions. For any class constructor f[x],
one can compute the union of all the classes f[x] for which x is a set as follows:

{w | ∃x w ∈ f[x]} = range[reify[x, f[x]]].

In the present case, one needs to use the reification rules for the IMAGE and id construc-
tors:

reify[x, IMAGE[y]] = SWAP ◦ inverse[rotate[
IMAGE[rotate[inverse[reify[x, y]]]] ◦ CART ◦ SWAP]] ◦ SINGLETON,

reify[x, id[y]] = DUP ◦ reify[x, y].

Computer-Supported Mathematical Theory Development’04 85

In this way one readily discovers that the class TOPS is invariant under the relation

range[reify[x, IMAGE[IMAGE[id[x]]]]] =
IMAGE[CAP] ◦ CART ◦ id[range[SINGLETON]× V] ◦ inverse[SECOND].

Before leaving this topic, it is probably worth pointing out that even more is true; the
function id[x] can be replaced by any one-to-one function. The class fix[UCLOSURE]

is invariant under IMAGE[IMAGE[x]] for any class x, and the class binclosed[CAP]

is invariant under IMAGE[IMAGE[x]] when x is any one-to-one function. From this it
readily follows that

ONEONE[x]⇒ image[IMAGE[IMAGE[x]], TOPS]⊂ TOPS.

8 Transitive closures of relations

An important application of HULL functions is the theory of transitive closures of rela-
tions. This relational transitive closure trv[x] should not be confused with the class
tc[x] discussed earlier.

A relation x ⊂ V × V is transitive if x ◦ x ⊂ x. The class of all small transitive
relations is denoted by TRV. The (relational) transitive closure trv[x] of a relation x is
the smallest transitive relation that contains x. When x is a small relation, the transitive
closure is hull[TRV, x], but this construction breaks down for proper classes. If x is a
proper class, then

trv[x] =
⋃

image[HULL[TRV], P[x]] = image[power[x], {0}′]

is the transitive closure of x∩(V×V). Here power[x] is a relation whose vertical sections
at the natural numbers are the various powers of x,

power[x] = iterate[Id⊗ x, Id].

Here cross denotes the parallel or cross product of two relations (Belinfante, [1999a]).
The situation here is actually quite similar to the theory of transitive closures of

classes tc[x] considered earlier, and indeed there are some connections between the
two meanings of transitive. In particular, the transitive closure of the membership
relation E is

trv[E] = inverse[TC] ◦ E.

Iteration can be used to show that HULL[invar[x]] is a total function when x is
thin. When x is thin and y is a set, the relation iterate[x,y] is a set, and hence

range[iterate[x, y]] = y ∪ image[trv[x], y]

is a set which contains y and is invariant under x. In other words, every set is a subset
of a set that is invariant under a given thin relation. This fact can be written as follows,

thin[x]⇒ image[inverse[S], invar[x]] = V.

86 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

Since the domain of HULL[x] is image[inverse[S], x], this completes the proof that
domain[HULL[invar[x]]] = V whenever x is thin. In particular, for the case that x =

inverse[E] one deduces that TC = HULL[FULL] is a total function.
The derivations of many properties of the constructor trv require an application of

iteration. In particular, this was used to derive the principle of well-founded induction.
A relation x is well-founded if the only set y satisfying y ⊂ image[x, y] is the empty
set. For example, the membership relation E is well-founded if and only if the axiom of
regularity holds. Whether or not the axiom of regularity holds, the restriction id[Ω] ◦ E
of the membership relation to the class Ω of ordinals is well-founded. Another familiar
example of a well-founded relation is the restriction id[FINITE]◦PS of the proper subset
relation PS = S ∩ Id′ to the class of finite sets. Since any subclass of a well-founded
relation is well-founded, one can show that x is well-founded if and only if P[x] ⊂ WF,
where WF is the class of all small well-founded relations. The principle of well-founded
induction says that if x is a well-founded relation whose inverse is thin, then there are
no proper classes y that satisfy y ⊂ image[x, y]. As an application of this, one can show
that if x is a well-founded relation with a thin inverse, then trv[x] is also well-founded.
In particular, since any set is thin, it follows that WF is invariant under HULL[TRV].

One of the theorems proved using Otter is the principle of FINITE induction: if the
empty set belongs to a class of sets, and if that class is invariant under the cover relation

K = PS ∩ (PS ◦ PS)′ = {〈x, y〉 | ∃z (z /∈ x & y = x ∪ {z})},

then FINITE ⊂ x. Explicitly:

0 ∈ x & image[K, x] ⊂ x ⇒ FINITE ⊂ x.

In the course of rederiving this result using the GOEDEL program, the following general
formula for the transitive closure of K was also derived:

Id ∪ trv[K] = CUP ◦ id[V× FINITE] ◦ inverse[FIRST].

Another simple result along these lines is the formula

iterate[K, {0}] = inverse[CARD] ◦ id[ω],

for the relation whose vertical sections at the natural numbers are the classes of all sets
with a given cardinality. Here CARD is the cardinality function which assigns to each
set the smallest ordinal with which it can be put in one-to-one correspondence, if one
exists. Since the axiom of choice is not assumed, the function CARD need not be total,
but its domain does contain the class FINITE.

9 Application to Integer Arithmetic

Because the definitions of CORE and HULL functions are not limited to topology, these
concepts find important applications in other branches of mathematics. In this section
an application to integer addition will be described.

The set Z of all integers can be defined as the set of equivalence classes of a certain
equivalence relation EQUIDIFF on the set ω×ω of pairs of natural numbers, where pairs

Computer-Supported Mathematical Theory Development’04 87

〈u, v〉 and 〈x, y〉 are considered to be equivalent if the sum of the natural numbers u and y

equals the sum of v and x. These equivalence classes are in fact one-to-one functions. For
example, the integer zero is the identity function id[ω] on the natural numbers, and the
integer unity is the successor function on the natural numbers. The non-negative integer
plus[x] corresponding to the natural number x is the function that increments natural
numbers by x. The negative of the integer plus[x] is the function inverse[plus[x]].
Each positive integer has domain omega, but the domain of inverse[plus[x]] is the
relative complement of the natural number x in ω, that is, the set of all natural numbers
greater than or equal to x.

The sum of two integers can be defined as the unique integer that contains their
composite. As a matter of fact, the composite of two integers is already an integer
except for the case that the left factor is positive and the right factor is negative. In
that case, the composite is contained in the unique integer obtained by reversing the
order of the factors:

plus[x] ◦ inverse[plus[y]] ⊂ inverse[plus[y]] ◦ plus[x].

This yields the following simple formula for the binary function INTADD for integer
addition:

INTADD = HULL[Z] ◦ COMPOSE ◦ id[Z× Z].

From this formula one can derive the familiar properties of integer addition, including
the commutative law,

INTADD ◦ SWAP = INTADD,

the associative law,

INTADD ◦ (Id⊗ INTADD) ◦ ASSOC = INTADD ◦ (INTADD⊗ Id).

The function that takes an integer to its negative is

id[Z] ◦ INVERSE = INVERSE ◦ id[Z].

This is an automorphism of integer addition:

INVERSE ◦ INTADD = INTADD ◦ (INVERSE⊗ INVERSE).

Integer subtraction is expressible in terms of addition and negatives:

rotate[INTADD] = INTADD ◦ (Id⊗ INVERSE).

10 Summary

The CORE and HULL constructors discussed in this paper are useful not only in topology,
but have applications in many other branches of mathematics. In group theory, for ex-
ample, the subgroup generated by a subset of a group is the intersection of all subgroups
that contain the given set, a fairly typical application of the hull operation in abstract
algebra.

88 Belinfante, Goble: CORE and HULL Constructors in Gödel’s Class Theory

By making available such standard constructors in systems for automated reasoning,
and deriving their general properties, a valuable arsenal is created that can be relied
upon to furnish the ammunition needed to attack many interesting applications. The
lofty dream that automated reasoning and verification systems will one day be used
routinely in mathematical reasearch will only be realized if serious efforts are made to
connect the abstract principles of automated reasoning with the needs encountered in
the everyday practice of modern mathematics, laying a solid foundation upon which one
can build the many marvelous edifices that comprise the infrastructure of mathematical
research.

Bibliography

[1997] Bancerek, G., Closure Operators and Subalgebras, Journal of Formalized Math-
ematics, vol. 9 (1997), pp. 295–301.

[1999a] Belinfante, J. G. F., Computer proofs in Gödel’s class theory with equational
definitions for composite and cross, Journal of Automated Reasoning, vol. 22 (1999)
pp. 311–339.

[1999b] Belinfante, J. G. F., On computer-assisted proofs in ordinal number theory,
Journal of Automated Reasoning, vol. 22 (1999), pp. 341–378.

[2001a] Belinfante, J. G. F., Computer Proofs about Transitive Closure, in International
Joint Conference on Automated Reasoning, IJCAR-2001 Short Papers, pp. 11–20,
edited by R. Goré, A. Leitsch and T. Nipkow, Technical Report DII 11/01, Siena,
Italy, 19–23 June 2001.

[2001b] Belinfante, J. G. F., Discovering Theorems using GOEDEL: A Case Study, in
Calculemus-2001, 9th Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning, 21–22 June 2001, Siena, Italy, edited by Steve Linton and
Roberto Sebastiani.

[2003] Belinfante, J. G. F., Reasoning about iteration in Gödel’s class theory, in Auto-
mated Deduction–CADE-19, Proceedings of the 19th International Conference on Au-
tomated Deduction, Miami Beach, FL, USA July–August 2003, edited by F. Baader,
Lecture Notes in Artificial Intelligence, vol. 2741, pp. 228–242, Springer Verlag, Berlin,
2003. (ISBN 3-540-40559-3)

[1986] Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel M. and Wos, L., Set the-
ory in first orderlogic: clauses for Gödel’s axioms, Journal of Automated Reasoning,
volume 2 (1986), pages 287–327.

[2004] Chang, K., In Math, Computers Don’t Lie. Or Do They?, The New York Times,
April 6, 2004.

[1991] Farmer, W. F., and Thayer, F. J., Two Computer-Supported Proofs in Metric-
Space Topology, Notices of the American Mathematical Society, vol. 38 (1991), pp.
1133–1138.

Computer-Supported Mathematical Theory Development’04 89

[1940] Gödel, K., The Consistency of the Axiom of Choice and of the Generalized
Continuum Hypothesis with the Axioms of Set Theory, Princeton University Press,
Princeton, 1940.

[1989] McCune, W. and Wick, C., Automated reasoning about elementary point-set
topology, Journal of Automated Reasoning, vol. 5 (1989), pp. 239–255.

[1987] Mendelson, E., Introduction to Mathematical Logic, Third edition, Wadsorth &
Brooks/Cole, Monterey, CA, 1987.

[1967] Rubin, J. E., Set Theory for the Mathematician, Holden-Day, San Francisco,
1967.

[1987] Tarski, A., and Givant, S., A Formalization of Set Theory without Variables,
American Mathematical Society Colloquium Publications, volume 41, Providence,
Rhode Island, 1987.

Computer-Supported Mathematical Theory Development’04 91

Classification of Quasigroups by Random Walk on Torus

Smile Markovski, Danilo Gligoroski and Jasen Markovski
(University Ss Cyril and Methodius in Skopje, Macedonia)

{smile,danilo,jasen}@ii.edu.mk

Abstract

Quasigroups are algebraic structures closely related to Latin squares which have
many different applications. There are several classifications of quasigroups based
on their algebraic properties. In this paper we propose another classification based
on the properties of strings obtained by specific quasigroup transformations. More
precisely, in our research we identified some quasigroup transformations which can
be applied to arbitrary strings to produce pseudo random sequences. We performed
tests for randomness of the obtained pseudo-random sequences by random walks on
torus. The randomness tests provided an empirical classification of quasigroups.

Key words: random walk, quasigroup transformation, χ2-test

AMS Mathematics Subject Classification (2000): 20N05, 11K45, 62P99

1 Introduction

The classification of finite quasigroups is a problem of big importance considering the
applications of quasigroups in many theories like cryptography, coding theory, design
theory and others. Two main classifications are obtained by using the algebraic prop-
erties of the quasigroups: (1) classes of isotopic quasigroups, which are known only for
quasigroups of orders up to 10 [17] and (2) classes of isomorphic quasigroups. Also,
quasigroups are classified on varieties according to identities they satisfy (for example,
totally symmetric quasigroups, Stein quasigroups, Moufang quasigroups etc.). An in-
teresting algebraic classification of abelian quasigroups is given in [18]. As noted in
[16], the classification of algebraic structures like quasigroups is a very important and
difficult problem.

In this paper we give a new classification of finite quasigroups based upon the strings
obtained by quasigroup transformations, defined in section 2. Several applications of
a quasigroup transformation on a given string produce a string which can be consid-
ered as pseudo-random sequence. Thus, quasigroup operations on an alphabet may be
considered as pseudo-random sequence generators (PRSG). A PRSG designed by using
quasigroup transformations (QPRSG) is strongly dependent on the quasigroup opera-
tion used in its construction. For some quasigroups the QPRSG generates a random
sequence that passes all publicly available tests for pseudo-random sequences, but there
are quasigroups that produce sequences far away from random ones. Our classification
is based on statistical test for randomness defined by using random walks on torus.
Given an alphabet A = {a1, a2, . . . , an} and a quasigroup operation on A we transform

92 Markovski, Gligoroski, Markovski: Classification of Quasigroups

the string a1a2 . . . ana1a2 . . . an . . . a1a2 . . . an into a possible pseudo random sequence.
Afterwards we measure how the newly obtained sequence performs on the tests, which
provides an empirical classification of finite quasigroups of any order. The organization
of the paper is as follows. Needed facts on quasigroups and quasigroup string trans-
formations are given in section 2. The random walk on torus and the corresponding
statistical tests are considered in section 3. Section 4 describes the program support we
have used. It presents an original software design for the purposes of this research that
can be freely downloaded from the following URL http://twins.ii.edu.mk/trw). A com-
plete classification of quasigroups of order 4 is presented in section 5, and in section 6
we present some results obtained for classification of quasigroups of higher order. There
are 3 appendices as well. Periodicity of the quasigroup transformed strings and QPRSG
are discussed in appendix 1. In appendix 2 we present graphical representations of the
random walks on torus for some quasigroups.

2 Quasigroup string transformations

A quasigroup is a groupoid (Q, ∗) satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q)(u ∗ x = v & y ∗ u = v).

This implies the cancellation laws x ∗ y = x ∗ z =⇒ y = z, y ∗ x = z ∗ x =⇒ y = z
and the equations a ∗ x = b, y ∗ a = b have unique solutions x, y for each a, b ∈ Q.

Given a quasigroup (Q, ∗) five so called parastrophes (or conjugate operations) can
be adjoint to ∗, and here we will use only two of them, denoted by \ and / and defined
by

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (2)

Then (Q, \) and (Q, /) are quasigroups too and the algebra (Q, ∗, \, /) satisfies the
identities

x \ (x ∗ y) = y, (x ∗ y)/y = x, x ∗ (x \ y) = y, (x/y) ∗ y = x (3)

Conversely, if an algebra (Q, ∗, \, /) with three binary operations satisfies the identities
(3), then (Q, ∗), (Q, \), (Q, /) are quasigroups and (2) holds.

A Latin square on a finite set Q of cardinality |Q| = n is an n × n-matrix with
entries from Q such that each row and each column of the matrix is a permutation of
Q. To any finite quasigroup (Q, ∗) given by its multiplication table a Latin square can
be associated, consisting of the matrix formed by the main body of the table, since each
row and column of the matrix is a permutation of Q.

Using quasigroups several quasigroup string transformations can be defined and here
we will define only two of them. Consider an alphabet (i.e. a finite set) A, and denote by
A+ the set of all nonempty words (i.e. finite strings) formed by the elements of A. The
elements of A+ will be denoted by a1a2 . . . an rather than (a1, a2, . . . , an), where ai ∈ A.
Let ∗ be a quasigroup operation on the set A, i.e. consider a quasigroup (A, ∗). For each
l ∈ A we define functions el, e′l : A+ −→ A+ as follows. Let ai ∈ A, α = a1a2 . . . an.
Then

el(α) = b1 . . . bn ⇐⇒ bi+1 = bi ∗ ai+1,

Computer-Supported Mathematical Theory Development’04 93

e′l(α) = b1 . . . bn ⇐⇒ bi+1 = ai+1 ∗ bi

for each i = 0, 1, . . . , n− 1, where b0 = l.
The functions el, e′l are called e- and e′-transformation of A+ based on the operation

∗ with leader l.
The compositions of mappings

Ek = el1 ◦ el2 ◦ · · · ◦ elk ,

and
E′

k = e′l1 ◦ e′l2 ◦ · · · ◦ e′lk ,

where li are leaders, are said to be E- and E ′-transformations of A+ respectively. Further
on we will usually use only one leader, i.e. l = li for each i.

Example 1 Let A = {a, b, c, d} and let the quasigroup operation ∗ on A be defined by

∗ a b c d

a c b d a
b a c b d
c d a c b
d b d a c

Take a to be the leader and α = bbbbaccdaadbdcabdbdcaaa. Then the transformed
strings E1(α) = ea(α), E2(α) = ea(E1(α)), E3(α) = ea(E2(α)) are the following:

b b b b a c c d a a d b d c a b d b d c a a a = α

a b c a b a d a a c d c a a d b c b c b b a c d = E1(α)

a b b a b a a c d a a d b a a b b c c a b a d c = E2(α)

a b c d d b a d c d b d d b a b c c c d d b d a = E3(α)
�

The functions Ek and E′
k have the following properties [9, 10]:

Theorem 1 The transformations Ek and E′
k are permutations of A+. �

Theorem 2 Consider an arbitrary string α = a1a2 . . . an ∈ A+, where ai ∈ A, and let
β = Ek(α), β′ = E′

k(α). If n is sufficiently large integer then, for each s : 1 ≤ s ≤ k,
the distribution of substrings of β and β ′ of length s is uniform. (We note that for s > k
the distribution of substrings of β and β ′ of length s may not be uniform.) �

We say that a string α = a1a2 . . . an ∈ A+, where ai ∈ A, has a period p if p is the
smallest positive integer such that ai+1ai+2 . . . ai+p = ai+p+1ai+p+2 ai+2p for each
i ≥ 0.

Let α, β, β ′ be as in Theorem 1. In appendix 1 we prove the following theorem:

Theorem 3 The periods of the strings β and β ′ are increasing at least linearly by k.
�

94 Markovski, Gligoroski, Markovski: Classification of Quasigroups

The increase of the periods depends of the quasigroup operations, and as seen from
our experiments (and also by [2]) for some quasigroups (Q, ∗) it is exponential, i.e. if
α has a period p, then β = Ek(α) and β′ = E′

k(α) may have periods greater than pqk

for some real number q : |Q| ≥ q > 1. In such a way the class of finite quasigroups
can be separated into two subclasses: the class of quasigroups with exponential growth
(exponential quasigroups) and the class of quasigroups with linear growing (linear quasi-
groups). There are no known criteria for distinguishing these two classes of quasigroups.
By many experiments we have made it can be noticed that only the exponential quasi-
groups produce good pseudo-random sequences.

In what follows we will usually use only E-transformations, since the results will
hold for E ′-transformations by symmetry.

3 Statistical tests of randomness by using random walk on

torus

Random walks are defined on the discrete plane Z
2 . Given a (pseudo) random sequence,

a random walk can be defined in many different ways. If the random sequence has
elements from the alphabet {a, b, c, d} then we can use the four one-step directions
left (when a appears), right (when b appears), up (for c) and down (for d). For the
alphabet {a, b, c, d, e} we can choose the stop option (no movement) if e appears, and
for 8 letter alphabet we can choose the diagonal movements as well. For 6 letter alphabet
{a, b, c, d, e, f} we can choose a diagonal movement up and left when e appears, and a
diagonal movement up and right when f appears. In the case of 7 letter alphabet
{a, b, c, d, e, f, g} we can add stop option for g. For an alphabet with more than 8 letters
we can group the letters in classes each one containing 4, 5, 6, 7 or 8 letters, and then we
can use the preceding definitions of movements. If we have two or three letter alphabet
we will consider pairs of letters as one letter.

One can argue that the movements defined for 6 and 7 letter alphabet require very
large discrete planes (demanding huge memory arrays), which makes them difficult for
designing suitable program support. That is why we have chosen a random walk on a
torus. Instead of the whole discrete plane we take the square bordered by the points
with coordinates (−n,−n), (−n, n), (n, n) and (−n, n), where n is a positive integer,
and we identify the points (s, n) and (s,−n) for each s : −n ≤ s ≤ n, and the points
(n, t) and (−n, t) for each t : −n ≤ t ≤ n. Then we say that the torus size is n.

The random walks can be used for designing many suitable tests for PRSGs (see for
example [11, 19]). We suppose that each point (x, y) of the discrete torus has a weight 0
at the beginning, and we increase the weights of the points according to the definitions
of the movements, following the next procedure. Let s be a fixed positive integer. For
a given sequence α = a1a2 . . . ad, starting from the coordinate center (0, 0) we make
s steps according to the values of the first s elements a1a2 . . . as and we add 1 to the
weight of the point (p, q) where the movement stopped. After that, starting from the
point (p, q), we continue the movement following the next s elements as+1 . . . a2s of the
string α and we increase the weight of the point (u, v) where the movements stopped,
then we continue starting from the point (u, v), and so on. Note that the average weight
of a point, i.e. the frequency of stops at that point, is f = d/s and we choose d and s

Computer-Supported Mathematical Theory Development’04 95

such that f is an integer.
For a given pseudo-random sequence, we can count the weights of the points of

the torus. On the other hand, assuming that we have a theoretically perfect random
sequence, we can count the weights (i.e. the frequency) as a product of the probability
of the stop at the point (p, q) and the number of trials, obtaining in such a way the
theoretical frequency of stops. Further on we will use the following property [15]:

Proposition 1 The distribution of the weights obtained from unbiased random se-
quence is uniform. �

The statistical tests are defined as follows. We divide a torus of size n on t regions
with equal number of discrete points by using r parallel horizontal and k parallel vertical
lines (rows and columns), where r and k are factors of n. By Proposition 1 the theoretical
weights of each region is Ei = fn2/t for i = 1, . . . , t. We compare the random sequences
obtained by PRNGs with the theoretical ones by using the Pearson χ2-test, where the

test statistics is given by χ2 =
t−1
∑

i=0

(Oi −Ei)
2

Ei

, and it has χ2 distribution with t − 1

degrees of freedom, where Oi denotes the number of arrivals at i-th region from a
sequence obtained by a PRNG. We accept the assumption that the random sequence
generated by PRNG is uniformly distributed if χ2 ≤ χ2

t−1,p, where χ2
t−1,p is a number

which satisfy the condition P{χ2 > χ2
t−1,p} = p, for given p. In opposite case, we reject

the assumption of uniformity. Note that the statistics will be relevant only if we have
sufficiently large sequences.

4 Program support

We performed the experiments on the quasigroups using a Java application that (1)
generates quasigroups, (2) performs a random walk using the generated quasigroups,
(3) does the required statistics on the obtained random walk data and (4) generates
visual representation of the obtained random walk data in bitmap format (.BMP). The
software package requires standard Java run-time environment (JRE) and it can be
freely downloaded from the following URL http://twins.ii.edu.mk/trw).

The user input is defined by text configuration files. There are three configuration
files, one for each type of operation: (1) quasigroup generation, (2) random walk and
(3) statistical tests. The application reads the configuration files and performs the
operations defined in them. For example, the configuration file for the quasigroup
generation contains two main fields: (1) QGOrder, the order of the quasigroup and (2)
GenerationMethod, which can be A - all quasigroups of a given order, L - predefined
portion of quasigroups in lexicographic order (e.g. from 50th until 60th quasigroup)
and R - predefined number of randomly generated quasigroups. In case of lexicographic
generation the user has to enter the starting number and the ending number of the
quasigroup (using the fields LexiStart and LexiEnd) and in case of random generation
the user has to enter the number of randomly generated quasigroups (using the field
RandomGeneration).

The quasigroups are exported in a text file which allows easy manipulation. The
names of the files reveals the order of the quasigroups and the way the quasigroups have

96 Markovski, Gligoroski, Markovski: Classification of Quasigroups

been generated. For example, QG o8 R 6.txt contains 6 random quasigroups of order
8. For more details, please refer to the readme file available in the software package.

The random walk data is also exported in a text file with the according quasigroup
used to perform the random walk. Again, the text file is named with a special format.
The first part of the filename is the same as the file that contains the quasigroups.
Afterwards, there is information about the size of the torus and the number of expected
arrivals per torus point. For example, if we perform a torus walk on the previous example
for a torus with size 100 × 100 points and we expect 200 visits per point, the random
walk output filename will be QG o8 R 6 w100 e200.txt. For more details, please refer
to the readme file available in the software package.

The random walks require user input values for the following parameters: (i) torus
size, (ii) random walk length, (iii) random walk definition (left, right, up, down, stop,...),
(iv) number of expected visits, (v) number of applications of the transformation E
and ((vi)) the leader. Since we wanted to test different types of walks, the walk is
defined using relative coordinate changes in regard to the number of the pseudo random
sequence.

For example, if the letter 2 means the walk continues in the direction up, than we
define the relative coordinate change as (0, 1) (down would be (0, -1), left (-1, 0), stop
(0, 0), left-up (-1,1) etc). In this way the user is able to define any type of random walk.

An additional feature allows generation of bitmap images that give a visual presen-
tation of the random walk. The bitmaps are generated automatically using the random
walk data. Each pixel presents one point on the torus body. Brighter pixels denote
points with higher number of arrivals. The brightness of the pixels is calculated rela-
tively to the minimal and maximal number of arrivals on the whole torus body.

The application assumes an unified alphabet for each quasigroup of given order n
to be {0, 1 . . . , n− 1}. It performs the randomness test of the pseudo random number
sequence using the χ2 fit test as described previously. More precisely it calculates the
sum as defined for χ2 statistics and exports the obtained results in a log text file which
contains information about the quasigroup and the obtained and expected χ2 values.

The χ2 statistics can be performed using different partitioning of the torus body
on regions and different probabilities of success. The program contains predefined χ2

values for degrees of freedom from 1 to 30 and from 40 to 100 with step 10 and for
probabilities to fit: 0.1, 0.075, 0.05, 0.01, 0.005, which can be found in any statistical
textbook. Furthermore, the user can enter the χ2 values which are not embedded in the
program. Thus, there is no limit on the number of statistics which can be performed on
a given random walk.

The number of expected visits per point defines the expected stops in case of perfect
random number sequence. The number of applications of the transformation E defines
how many transformations have to be applied in order to obtain the pseudo-random
sequence. These two parameters together with the torus size and the random walk
length directly influence the number of operations required to perform the random walk.
Higher numbers give more accurate tests, but require much more time. The complexity
of the random walk is given by the following equation

Total number of operations =
= Torus points ∗Walk length ∗
∗ Expected stops ∗Number of E transformations

Computer-Supported Mathematical Theory Development’04 97

Thus, the execution time of the program is polynomial, but it should not be under-
estimated since the calculation of the random walk data took about two days for all
quasigroups of order 4, for (1) torus with 40 × 40 points, (2) 300 expected visits per
point, (3) 121 steps of the random walk and (4) 50 E-transformations, on a Pentium 4
server with 2.8GHz and 1 GB RAM.

5 Classification of quasigroups of order 4

There are 576 quasigroups of order 4 and they are lexicographically ordered. The
lexicographic ordering of the quasigroups of a given order is performed in such a way
that the rows of the Latin square are concatenate the-next-after-the-previous and then
lexicographic ordering of that sequences is applied. The i-th quasigroup of order n in
the lexicographic ordering is denoted by QGn-i. The first seven quasigroups of order 4
are the following ones

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 2 3 0 1 2 3 0 1 3 0 2
2 3 0 1 2 3 1 0 3 2 0 1 3 2 1 0 2 3 0 1 3 0 1 2 2 0 3 1
3 2 1 0 3 2 0 1 2 3 1 0 2 3 0 1 3 0 1 2 2 3 0 1 3 2 0 1

QG4-1 QG4-2 QG4-3 QG4-4 QG4-5 QG4-6 QG4-7

where the main row and column are 0 1 2 3.
We have used 8 statistical test based on random walk of torus defined as follows.

The torus size was taken n = 40, and that means that 1600 discrete points had to
be visited by the random walks, with an average of 300 stops at each one, after 121
movements left, right, up or down. The E-transformations were taken 50 times over
the string 01230123 . . . 0123 with leader 0. We divided the torus on 4 types of regions
R1, R2, R3, R4 with equal number of points, where R1 consists of 4 regions, R2 of 8
regions, R3 of 16 regions and R4 of 25 regions. We took for each type of region two
statistics with following values for p and χ2:

R1 − S1 : p = 0.050, χ2 = 9.488 with 3 degree of freedom,
R1 − S2 : p = 0.075, χ2 = 8.496 with 3 degree of freedom,
R2 − S3 : p = 0.050, χ2 = 15.507 with 7 degree of freedom,
R2 − S4 : p = 0.075, χ2 = 14.270 with 7 degree of freedom,
R3 − S5 : p = 0.050, χ2 = 26.296 with 15 degree of freedom,
R3 − S6 : p = 0.100, χ2 = 23.543 with 15 degree of freedom,
R4 − S7 : p = 0.050, χ2 = 37.653 with 24 degree of freedom,
R4 − S6 : p = 0.100, χ2 = 34.382 with 24 degree of freedom,

From the obtained results we concluded that 200 quasigroups failed all tests and they
are linear quasigroups, while 376 passed the tests and they are exponential quasigroups.
We have applied 50 E-transformations in order to obtain more accurate classification of
the quasigroups.

We classified the exponential quasigroups according to the numbers of tests failed, so
we obtained 8 classes. Here we also put the quasigroups that failed on all 8 tests, since
they are exponential ones. Namely, they passed all the tests when 200 E-transformations

98 Markovski, Gligoroski, Markovski: Classification of Quasigroups

were used instead of 50.

Quasigroups that failed on 0 tests: QG4-6, 8, 17, 20, 22, 23, 29, 33, 35, 36, 38, 50, 56, 59, 61,
62, 69, 73, 74, 75, 78, 79, 81, 84, 86, 87, 88, 90, 91, 94, 96, 99, 103, 105, 107, 117, 119, 120, 123, 125,
134, 135, 136, 140, 141, 143, 150, 151, 155, 156, 158, 165, 175, 177, 181, 184, 186, 188, 190, 199, 200,
204, 205, 210, 215, 216, 217, 224, 225, 227, 231, 236, 241, 245, 247, 248, 250, 254, 260, 264, 270, 271,
276, 277, 278, 279, 280, 282, 283, 288, 289, 290, 298, 304, 309, 311, 317, 321, 326, 327, 336, 337, 338,
347, 350, 352, 357, 358, 360, 362, 367, 368, 369, 372, 373, 383, 384, 387, 390, 391, 393, 396, 400, 404,
410, 415, 416, 418, 419, 422, 424, 426, 427, 428, 434, 442, 443, 446, 448, 449, 453, 458, 468, 469, 470,
473, 474, 475, 478, 479, 481, 482, 486, 492, 493, 502, 509, 515, 522, 525, 529, 539, 542, 543, 547, 555,
557, 558, 562, 564, 565, 567, 571

Quasigroups that failed on 1 test: QG4-12, 31, 41, 85, 104, 106, 114, 115, 153, 161, 167, 180,
183, 193, 198, 207, 209, 230, 233, 240, 257, 258, 268, 281, 297, 299, 300, 301, 310, 316, 320, 333, 339,
351, 356, 361, 366, 386, 412, 413, 421, 425, 441, 447, 454, 505, 511, 513, 548, 554

Quasigroups that failed on 2 tests: QG4-10, 13, 44, 53, 64, 72, 76, 95, 108, 128, 129, 149, 194,
195, 202, 238, 249, 266, 286, 287, 307, 319, 328, 329, 330, 340, 437, 455, 460, 465, 471, 783, 503, 516,
527, 533

Quasigroups that failed on 3 tests: QG4-15, 30, 34, 52, 65, 159, 191, 323, 344, 353, 382, 423,
435, 457, 489, 490, 504, 510, 518, 538

Quasigroups that failed on 4 tests: QG4-19, 45, 47, 112, 154, 162, 173, 208, 244, 255, 273, 332,
346, 370, 375, 377, 389, 463, 472, 491, 498, 541, 546, 560, 569

Quasigroups that failed on 5 tests: QG4-66, 109, 201, 221, 239, 267, 296, 313, 379, 394, 452,
544

Quasigroups that failed on 6 tests: QG4-58, 131, 164, 211, 214, 220, 237, 251, 322, 341, 363,
378, 440, 459, 462, 521, 524, 530

Quasigroups that failed on 7 tests: QG4-67, 89, 98, 122, 187, 226, 261, 295, 312, 480, 499, 501,
512, 535

Quasigroups that failed on 8 tests: QG4-32, 39, 102, 118, 124, 137, 152, 168, 219, 256, 265,

294, 306, 376, 397, 402, 409, 436, 487, 488, 496, 508, 519, 532, 536, 545, 561

The linear quasigroups can be grouped in much more subclasses. For that aim it
is not enough to see only how they failed the tests. There are quasigroups with same
experimentally obtained χ2 values and they are in the same class as well. Neverthe-
less, there are quasigroups with similar experimental results and they were classified in
classes by using the visual presentations of the distributions of the stops at the torus.
Our program support allows bitmap images of the toruses and similarities of the test
results and similarities of the images were used for suitable classification. We obtained
64 different classes, but we have to stress out that these classes are results of our choice
of the parameters made with an intention as much as possible classes to be obtained.
If we choose for instance a torus with side 100 and 200 E-transformations with leader
3, we could obtained a somewhat different classification. We named the classes as Ci,
where QG4-i is the first quasigroup that appears in that class. We start with classes of
higher cardinality.

C1 = {QG4− 1, 4, 11, 24, 26, 27, 42, 48, 51, 57, 68, 126, 139, 142}
C246 = {QG4 − 246, 318, 408, 520, 526, 566, 576, 430, 438, 550, 431, 551}
C157 = {QG4 − 157, 163, 196, 243, 252, 315, 420, 476, 485, 517, 253}
C146 = {QG4 − 146, 147, 169, 172, 178, 218, 229, 259, 388, 331}
C14 = {QG4 − 14, 21, 92, 113, 203, 285, 305, 364, 385}
C176 = {QG4 − 176, 182, 223, 232, 433, 456, 553, 559, 572}
C16 = {QG4 − 16, 40, 43, 60, 70, 130, 133, 138}
C174 = {QG4 − 174, 263, 335, 392, 514, 528, 568, 570}

Computer-Supported Mathematical Theory Development’04 99

C179 = {QG4 − 179, 192, 334, 374, 464, 494, 653}
C189 = {QG4 − 189, 348, 354, 395, 405, 573}
C235 = {QG4 − 235, 342, 364, 467, 495, 507}
C407 = {QG4 − 407, 429, 432, 549, 552, 575}
C2 = {QG4− 2, 3, 18, 25, 28}
C253 = {QG4 − 253, 272, 292, 381, 500}
C7 = {QG4− 7, 9, 49, 63}
C83 = {QG4 − 83, 111, 398, 556}
C262 = {QG4 − 262, 325, 411, 534}
C345 = {QG4 − 345, 359, 399, 401}
C5 = {QG4− 5, 121, 144}
C145 = {QG4 − 145, 170, 171}
C166 = {QG4 − 166, 349, 439}
C213 = {QG4 − 213, 303, 324}
C228 = {QG4 − 228, 444, 537}
C55 = {QG4 − 55, 71}
C97 = {QG4 − 97, 116}
C101 = {QG4 − 101, 302}
C160 = {QG4 − 160, 206}
C185 = {QG4 − 185, 403}
C197 = {QG4 − 197, 380}
C242 = {QG4 − 242, 314}
C284 = {QG4 − 284, 540}
C343 = {QG4 − 343, 484}
C365 = {QG4 − 365, 497}
C406 = {QG4 − 406, 574}

C445 = {QG4 − 445, 506}

The rest of the classes consist of only one quasigroup:

C37, C46, C54, C77, C80, C82, C93, C100, C110, C127, C132, C212, C222,

C234, C269, C274, C275, C293, C308, C355, C371, C414, C417, C450, C451,

C461, C466, C477, C531

On Appendix 3 one can see graphical representations of some of the classes given by
the distributions of the stops over the toruses.

We have to stress out that the preceding classification depends on our choice of the
parameters. The main classification of 200 linear and 376 exponential quasigroups will
be not changed under any choice of parameters. The only changes can be obtained in
classification of linear quasigroups.

6 Results for quasigroups of higher order

We made experiments with the first 500 quasigroups (in lexicographic ordering) of order
5, 6, 7 and 8. The tests were made with same parameters as for quasigroups of order 4.

Quasigroups of order 5: All quasigroups are exponential except QG5-77, QG5-
119, QG5-145, QG5-213, QG5-241, QG5-285, and all of these are commutative loops,
and QG5-372, QG5-402, QG5-472, that are obtained from commutative loops with
permutated rows. Of course, there are quasigroups of order 5 that are linear and that
are not loops (with permutated rows).

100 Markovski, Gligoroski, Markovski: Classification of Quasigroups

Quasigroups of order 6: There are 43 quasigroups that did not pass the tests.
The experimental results differ from the theoretical in hundreds for quasigroups QG6-2,
6, 36, 48, 53, 65, 79, 100, 101, 107, 171, 195, 217, in thousands for quasigroups QG6-1,
4, 5, 49, 50, 52, 54, 56, 97, 99, 102, 103, 104, 146, 147, 149, 152, 193, and in ten of
thousands for quasigroups QG6-3, 6, 7, 8, 51, 55, 98, 145, 148, 150. It is interesting that
QG6-157 passed the tests with χ2 values approximately equal to 0, but still it is a linear
one, and that can be seen from its ”torus image”. (It is a result of an inappropriate
choice of the regions.) So, the choice of the parameters and the regions has influence in
the classification.

Quasigroups of order 7: All quasigroups of order 7 passed the tests. Still, there
are linear quasigroups of order 7.

Quasigroups of order 8: In the first 500 quasigroups of order 8 there are 63 linear,
and QG8-1, 2, 25 are commutative loops. QG8-44, 105, 496 failed with hundred, QG8-
12, 16, 56, 66, 84, 130, 193, 205, 209, 213, 241, 253, 265, 273, 281, 324, 420, 432 failed
with thousand, QG8-3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 29, 31, 33, 41, 53, 81, 93, 140,
145, 157, 161, 165, 284, 293, 2 96, 321, 333, 395, 481, 484 failed with ten of thousand,
while QG8-5, 27, 97, 389, 399, 493 failed with million.

One conclusion of the presented results may be that quasigroups of prime order tend
to be more exponential than the quasigroups of composite order.

7 Conclusion

We showed that the classification of the quasigroups can be made by using suitable
experiments, and that the algebraic way of classifications is not the only useful one. In
our classifications, in fact, the algebraic properties of quasigroups do not have exclusive
importance. Thus, QG4-1 and QG4-172 are isomorphic ones, but they are classified in
two different classes, namely QG4-172 belongs to the class C146. On the other hand,
it seems that all commutative loops are linear quasigroups, but that assertions is not
proved.

Why it is important to have such classifications? We noted already the importance
of exponential quasigroups as tools for QPRSG. They are also important in construction
of other cryptographic tools like stream cipher or hash functions [4, 7, 9, 12]. The linear
quasigroups are used in design theory, for example in constructions of Steiner triple
systems [6]. Also, the symmetries that appear in some linear quasigroups can be used
for construction of classes of quasigroups of huge order (21024 for example) that are
needed in some applications [3, 8].

Bibliography

[1] Dénes, J., Keedwell, A.D.: Latin Squares and their Applications, English Univer.
Press Ltd., 1974

[2] Dimitrova, V., Markovski J.: On quasigroup pseudo random sequence genera-
tor,Proc. of the 1-st Balkan Conference in Informatics, Y.Manolopoulos and P.
Spirakis eds., 21-23 Nov. 2004, Thessaloniki, pp. 393–401

Computer-Supported Mathematical Theory Development’04 101

[3] Gligoroski, D.: Stream cipher based on quasigroup string transformations in Z
∗
p,

Contributions, Sec. Math. Tech. Sci., MANU (in print)

[4] Gligoroski, D., Markovski, S., Bakeva, V.: On Infinite Class of Strongly Collision
Resistant Hash Functions ”EDON-F” with Variable Length of Output, Proc. 1-
st Inter. Conf. Mathematics and Informatics for industry MII 2003, 14-16 April,
Thessaloniki, 302–308

[5] Gligoroski, D., Markovski, S.: Potential of quaisgroups as PRSG (in preparation)

[6] Goračinova-Ilieva, L., Markovski, S. and Sokolova, A.: On groupoids with identity
x(xy) = y, Quasigroups and Related systems 11 (2004), 39–54

[7] Markovski, S.: Quasigroup string processing and applications in cryptography,
Proc. 1-st Inter. Conf. Mathematics and Informatics for industry MII 2003, 14-
16 April, Thessaloniki, 278–290

[8] Markovski, S., Gligoroski, D.: Construction of quasigroups of huge order (in prepa-
ration)

[9] Markovski, S., Gligoroski, D., Andova, S.: Using quasigroups for one-one secure
encoding, Proc. VIII Conf. Logic and Computer Science “LIRA ’97”, Novi Sad,
(1997) 157–162

[10] Markovski, S., Gligoroski, D., and Bakeva, V.: Quasigroup string processing: Part
1, Contributions, Sec. Math. Tech. Sci., MANU, XX 1-2(1999) 13–28.

[11] Markovski, S., Gligoroski, D. and Bakeva, V.: Random walk tests for pseudo-
random number generators, Mathem. Commun. 6(2001) No.2, 135–143

[12] Markovski, S., Gligoroski, D., Stojčevska, B.: Secure two-way on-line communica-
tion by using Quasigroup Enciphering with almost public key, Novi Sad J. Math.
Vol. 30, No.2, 2000, 43–49

[13] Markovski, S., Kusakatov, V.: Quasigroup string srocessing: Part 2, Contributions,
Sec. math. Tech.Sci., MANU, XXI, 1-2(2000) 15–32

[14] Markovski, S., Kusakatov, V.: Quasigroup string processing: Part 3, Contributions,
Sec. math. Tech.Sci., MANU, XXII, 1(2001) (in print)

[15] Markovski, S., Mihova, M.: Statistical tests for randomness using random walks on
torus (in preparation)

[16] McCasland, R.L., Sorge, V.: Automating Algebra’s Tedious Tasks: Computerised
Classification, Proc. First Workshop on Challenges and Novel Applications for Au-
tomated Reasoning, Miami,2003 (http://www.uclic.ucl.ac.uk/usr/jgow/cnaar.pdf)
37–40

[17] McKay, B.D., Rogoyski, E.: Latin squares of order 10, Electronic J. Comb. 2 (1995)
http://ejc.math.gatech.edu:8080/Journal/journalhome.html

102 Markovski, Gligoroski, Markovski: Classification of Quasigroups

[18] Schwenk, J.: A classification of abelian quasigroups, Rendiconti di Matem., Serie
VII, V.15, Roma (1995), 161–172

[19] Vattulainen I. and Ala-Nissila, T.: Mission Impossible: Find a Random Pseudo-
random Number Generator, Computers in Physics, Vol.9, No. 5, 1995, 500-504

[20] http://www.csis.hku.hk/ diehard/

Computer-Supported Mathematical Theory Development’04 103

Appendix 1: Periodicity of the quasigroup
transformed strings and QPRSG

Let A be a finite alphabet of cardinality n and ∗ be a quasigroup operation on A. Take a
fixed element a ∈ A such that a∗a 6= a as a leader, and consider the string α = a1 . . . ak

where ai = a for each i ≥ 1 and k is sufficiently large. Hence, the period of the string

α is 1. Apply the transformation Es on α and denote Es(α) = a
(s)
1 . . . a

(s)
k . The results

are presented on Table 1.

a a . . . a a . . .

a a′1 a′2 . . . a′p−1 a′p . . .

a a′′1 a′′2 . . . a′′p−1 a′′p . . .

a a′′′1 a′′′2 . . . a′′′p−1 a′′′p . . .

a a
(4)
1 a

(4)
2 . . . a

(4)
p−1 a

(4)
p . . .

...
...

...
...

...

Table 1

We have that a′p = a for some p > 1 since a ∗ a 6= a and a′i ∈ A (so we have that
p is at least n), and let p be the smallest integer with this property. It follows that
the string E1(α) has a period p. For similar reasons we have that each of the strings
Es(α) is periodical. We will show that it is not possible all of the strings Es(α) to be
of same period p (except in the case when a generates a subquasigroup of order 2.) If

we suppose that it is true, we will have a
(s)
p = a for each s ≥ 1. Then we will also have

that there are bi ∈ A such that the following equalities hold:

a
(s)
p−1 = bp−1 for s ≥ 2

a
(s)
p−2 = bp−2 for s ≥ 3

...

a
(s)
1 = b1 for s ≥ p

Then we have that a ∗ b1 = b1, and that implies a
(s)
1 = b1 for each s ≥ 1. We obtained

a ∗ a = a ∗ b1 = b1, implying a = b1, a contradiction with a ∗ a 6= a. As a consequence

we have that a
(p+1)
1 = a ∗ a

(p)
1 = a ∗ b1 6= b1, a

(p+1)
2 = a

(p+1)
1 ∗ b2 6= b2, . . . , a

(p+1)
p−1 =

a
(p+1)
p−2 ∗ bp−1 6= bp−1, a

(p+1)
p = a

(p+1)
p−1 ∗ a 6= a. We conclude that the period of the string

Ep+1(α) is not p.
We will show that if a string β ∈ A+ has a period p and γ = E(β) has a period q,

then p is a factor of q. Namely, if γ = b1 . . . bqb1 . . . bq . . . b1 . . . bq, then β = (a \ b1)(b1 \
b2) . . . (bq−1 \ bq)||(bq \ b1)(b1 \ b2) . . . (bq−1 \ bq)|| . . . ||(bq \ b1)(b1 \ b2) . . . (bq−1 \ bq) is a
periodical string with period ≤ q. So, p ≤ q and this implies that p is a factor of q.

104 Markovski, Gligoroski, Markovski: Classification of Quasigroups

Combining the preceding results, we proved the following theorem for a string α
with period p0:

Theorem 4 The strings Es(α) are periodical with periods ps that are multiples of p0.
The periods ps satisfy the inequality

pps−1
> ps−1 (4)

for each s ≥ 1. �

We note that instead of the transformation E one can consider the transformation E ′.
Then, the table obtained for E ′ can be obtained from the Table 1 if it is transformed
symmetrically by the main diagonal. This implies that the following theorem is also
true:

Theorem 5 The strings αi = a′ia
′′
i . . . a

(s)
i . . . are periodical with periods pi that are

multiples of p0, for each i ≥ 1. The periods pi satisfy the inequality

ppi−1
> pi−1 (5)

�

The inequalities (4) and (5) are much stronger for some quasigroups, i.e. it can happened
ps+1 > ps for each s. In such a way we will obtain that ps ≥ p02

s. So, starting
from a string with period 1 we can produce strings with period ≥ 2s by applying a
transformation E or E ′.

A PRSG are devices that produce random strings with elements of a set A. Since
any device contains a determinism by itself, no one can guaranty that a theoretically
ideal random string can be produced by such a device, and that is why only pseudo ran-
dom strings can be produced. By Theorems 4 and 5 we can define a QPRSG as follows.
Given a finite alphabet A of order n > 3 and a quasigroup operation ∗ on A, apply
s times the transformation E (or E ′) on a periodical string on A. If the quasigroup
(A, ∗) is an exponential one, then the obtained output string will have an exponential
period and the distribution of the letters, pairs of letters, ..., s-tuple of letters will be
uniform. In such a way the output string will look very randomly. We can choose the
number s of applications of the transformation E to be sufficiently large, in such a way
a pseudo random strings with potentially infinite period and with uniform distribution
of all tuples of letters will be obtained. It was shown that for some quasigroups in such
a way obtained pseudo random strings passed all of the statistical tests for randomness
we had on disposal [20]. Of course, the problem is how an exponential quasigroup to
be obtained. It follows from the statistic presented in [2] and from our experiments
presented here that there are sufficiently many exponential quasigroups and they can
be effectively obtained. There is an effective way a random quasigroup of any order to
be constructed (see [7]), and the random walk on torus can be applied for checking if
the quasigroup is an exponential one.

Computer-Supported Mathematical Theory Development’04 105

Appendix 2: Graphical presentations

Here is a ‘real’ torus presentation at first:

Images of distributions of stops on torus of some classes of exponential quasigroups are
given in Figure 1.

QG4-6 QG4-12 QG4-10 QG4-15

QG4-19 QG4-58 QG4-67 QG4-32

Fig. 1. Images of exponential quasigroups

Images representing the distribution of stops on some classes of linear quasigroups
ar given in Figure 2.

Our experiments show that if there are internal symmetries in quasigroups then
they are well visible from their images. We present 3 examples on Figure 4. We noticed
that the permutation (0231) appears in some way in all of the given quasigroups. The
appearance of the permutation (0231) is denoted on the quasigroups by the arrows
→, ←, ↑, ↓. Also, we note that the arrows are grouped two by two. This observation
arise the following questions: If two quasigroups have the above property for some other
permutation and other grouping of arrows will they have symmetrical images? Can

106 Markovski, Gligoroski, Markovski: Classification of Quasigroups

QG4-1 QG4-2 QG4-5 QG4-7

QG4-14 QG4-16 QG4-83 QG4-97

QG4-145 QG4-146 QG4-157 QG4-160

QG4-166 QG4-174 QG4-176 QG4-179

Fig. 2. Images of linear quasigroups I

we find quasigroups of higher order with this property? The example shows that the
experimentally obtained results open questions that cannot be determined in another
way.

Computer-Supported Mathematical Theory Development’04 107

QG4-185 QG4-189 QG4-197 QG4-213

QG4-228 QG4-235 QG4-242 QG4-246

QG4-253 QG4-262 QG4-284 QG4-343

QG4-345 QG4-406 QG4-407 QG4-445

QG4-414 QG4-080 QG4-132 QG4-269

Fig. 2 (continued). Images of linear quasigroups I

108 Markovski, Gligoroski, Markovski: Classification of Quasigroups

1 2 0 3
3 0 2 1
2 1 3 0
0 3 1 2
↑ ↑ ↓ ↓

2 0 1 3 ←
1 3 2 0 ←
3 1 0 2 →
0 2 3 1 →

QG4-213 QG4-303 QG4-213 QG4-303

2 0 1 3 ←
0 2 3 1 →
3 1 0 2 →
1 3 2 0 ←

3 0 2 1
2 1 3 0
0 3 1 2
1 2 0 3
↑ ↑ ↓ ↓

QG4-293 QG4-476 QG4-293 QG4-476

2 0 1 3 ←
3 1 0 2 →
1 3 2 0 ←
0 2 3 1 →

2 1 0 3
3 0 1 2
1 2 3 0
0 3 2 1
↓ ↓ ↑ ↑

QG4-308 QG4-355 QG4-308 QG4-355

Fig. 4. The internal symmetries of different quasigroups

