Based on Peskun's theorem it is shown that optimal transition matrices in
Markov chain Monte Carlo should have zero diagonal elements except for the
diagonal element corresponding to the largest weight. We will compare the
statistical efficiency of this sampler to existing algorithms, such as
heat-bath updating and the Metropolis algorithm. We provide numerical results
for the Potts model as an application in classical physics. As an application
in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model
which have been simulated by the directed loop algorithm in the stochastic
series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio