401 research outputs found

    P2X7 receptor antagonism ameliorates renal dysfunction in a rat model of sepsis

    Get PDF
    Sepsis is a major clinical problem associated with significant organ dysfunction and high mortality. The ATP‐sensitive P2X7 receptor activates the NLRP3 inflammasome and is a key component of the innate immune system. We used a fluid‐resuscitated rat model of fecal peritonitis and acute kidney injury (AKI) to investigate the contribution of this purinergic receptor to renal dysfunction in sepsis. Six and 24 h time‐points were chosen to represent early and established sepsis, respectively. A selective P2X7 receptor antagonist (A‐438079) dissolved in dimethyl sulfoxide (DMSO) was infused 2 h following induction of sepsis. Compared with sham‐operated animals, septic animals had significant increases in heart rate (−1(−4 to 8)% vs. 21(12–26)%; P = 0.003), fever (37.4(37.2–37.6)°C vs. 38.6(38.2–39.0)°C; P = 0.0009), and falls in serum albumin (29(27–30)g/L vs. 26(24–28); P = 0.0242). Serum IL‐1ÎČ (0(0–10)(pg/mL) vs. 1671(1445–33778)(pg/mL); P < 0.001) and renal IL‐1ÎČ (86(50–102)pg/mg protein vs. 200 (147–248)pg/mg protein; P = 0.0031) were significantly elevated in septic compared with sham‐operated animals at 6 h. Serum creatinine was elevated in septic animals compared with sham‐operated animals at 24 h (23(22–25) ÎŒmol/L vs. 28 (25–30)ÎŒmol/L; P = 0.0321). Renal IL‐1ÎČ levels were significantly lower in A‐438079‐treated animals compared with untreated animals at 6 h (70(55–128)pg/mg protein vs. 200(147–248)pg/mg protein; P = 0.021). At 24 h, compared with untreated animals, A‐438079‐treated animals had more rapid resolution of tachycardia (22(13–36)% vs. −1(−6 to 7)%; P = 0.019) and fever (39.0(38.6–39.1)°C vs. 38.2(37.6–38.7)°C; P < 0.024), higher serum albumin (23(21–25)g/L vs. (27(25–28)g/L); P = 0.006), lower arterial lactate (3.2(2.5–4.3)mmol/L vs. 1.4(0.9–1.8)mmol/L; P = 0.037), and lower serum creatinine concentrations (28(25–30)ÎŒmol/L vs. 22(17–27)ÎŒmol/L; P = 0.019). P2X7A treatment ameliorates the systemic inflammatory response and renal dysfunction in this clinically relevant model of sepsis‐related AKI

    The Spectrum of Angiographic Findings in Transitional Cell Carcinoma of the Kidney

    Full text link
    The spectrum of angiographic finding in 20 patients with transitional cell carcinomas of the kidney is described. In 15 of 20 patients (75%), prospective diagnosis of transitional cell carcinomas were made because of a combination of the angiographic findings; tumour vessels, tumour stain, prominent pelviureteric arteries and arterial encasement. In 4 patients with negative angiograms the lesions were relatively small in size and were situated within the renal parenchyma, primarily involving the calyces. The use of pharmacoangiographic agents such as epine-phrine and priscoline improved the angiographic visualization of transitional cell carcinomas of the kidney. For the past several years angiography has had a central role in the evaluation of patients with hematuria and renal masses 1 . 5,6,7,8. Although the use of diagnostic ultrasound and renal puncture have eliminated angiography from the diagnosis of renal cysts, most renal masses which are solid or which have equivocal findings at ultrasound still undergo angiography. At the same time, the decreasing use of retrograde urography has resulted in more frequent angiography in patients with unilateral nonfunctioning kidneys. Transitional cell carcinomas of the renal pelvis are an important cause of both hematuria and non-functioning kidneys. We have therefore reviewed our material to reassess the angiographic abnormalities caused by the transitional cell carcinomas and the overall accuracy of the angiography in the diagnosis of these lesions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73228/1/j.1440-1673.1977.tb03191.x.pd

    Single-cell analysis of long non-coding RNAs in the developing human neocortex

    Get PDF
    Single cell transcriptomics of lncRNA expression in K562 cell cultures. A Distributions of median lncRNA expression to median mRNA expression ratios (lncRNA:mRNA) in populations, in silico merged single cells, and single cells from K562 cultures. B Proportion of K562 cells that expressed each lncRNA (blue) and mRNA (red), separated by maximum expression in single cells. C Same as in (B) but grouped by maximum expression quantile. D Distributions of non-zero lncRNA (blue) and mRNA (red) expression in 46 single K562 cells. Green squares, housekeeping genes; black triangles, ERCC Spike-In Controls. (PDF 454 kb

    Normalizing single-cell RNA sequencing data: challenges and opportunities

    Get PDF
    Single-cell transcriptomics is becoming an important component of the molecular biologist's toolkit. A critical step when analyzing data generated using this technology is normalization. However, normalization is typically performed using methods developed for bulk RNA sequencing or even microarray data, and the suitability of these methods for single-cell transcriptomics has not been assessed. We here discuss commonly used normalization approaches and illustrate how these can produce misleading results. Finally, we present alternative approaches and provide recommendations for single-cell RNA sequencing users

    Host Factors interacting with the Pestivirus N terminal protease, Npro are Components of the Ribonucleoprotein Complex

    Get PDF
    The viral N-terminal protease N(pro) of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for N(pro) through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to N(pro) did not inhibit these proteins from aggregating into stress granules. N(pro) interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with N(pro). To address a proviral role for N(pro) in RNP granules, we investigated whether N(pro) affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of N(pro) had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that N(pro) is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. IMPORTANCE Although the pestivirus N-terminal protease, N(pro), has been shown to have an important role in degrading IRF3 to prevent apoptosis and interferon production during infection, the function of this unique viral protease in the pestivirus life cycle remains to be elucidated. We used proteomic mass spectrometry to identify novel interacting proteins and have shown that N(pro) is present in ribosomal and ribonucleoprotein particles (RNPs), indicating a translational role in virus particle production. The virus itself can prevent stress granule assembly from these complexes, but this inhibition is not due to N(pro). A proviral role to subvert RNA silencing through binding of these host RNP proteins was not identified for this viral suppressor of interferon

    Growth dynamics of deciduous species during their life period: A case study of urban green space in India

    Get PDF
    It is evident that grass density (GD) and shoot growth rate (SGR) governs the differential settlement of substructure, groundwater recharge, and stability of green infrastructure. GD and SGR are usually assumed to be constant during the entire life period of vegetation. However, spatial and temporal dynamics of GD and SGR in urban green space were rarely explored previously. The main objective of this study is to explore the spatial and temporal dynamics of GD and SGR in urban space vegetated with deciduous species (mix grass i.e., Poaceae and Bauhinia purpurea). Field monitoring was conducted in the urban green space for one year (i.e., life period of selected species). The monitoring period includes the growth period and gradual wilting period. Substantial spatial variation of GD was found during the first six months. GD away from the tree trunk was found to be 1.02–56.3 times higher than that near the tree trunk during the first six months. Thereafter, any spatial variation of GD was not found in the next six months. Unlike the GD, SGR was found to vary during the entire life period of mix grass. In addition, SGR away from the tree trunk was found to be 1.1–4.6 times higher than that near the tree trunk. Any relationship between GD and rainfall depth was not found. Whereas, SGR mainly depends on rainfall depth. The hypothesis of uniformity in GD and SGR during the life period of deciduous species was not found to be true
    • 

    corecore