58 research outputs found

    Integrated environmental analysis of urban waste separate collection in the Sorrento peninsula, in Italy

    Get PDF
    The main aim of this work was to study the kerbside collection system of two municipalities in the Sorrento peninsula (in Italy) with an integrated approach based on the three pillars of sustainability: society, environment and economy. The studied municipality are Sorrento (16,745 inhabitants, 1,681 inhabitants/km²) and Piano di Sorrento (13,159 inhabitants, 1,793 inhabitants/km2). Piano di Sorrento and especially Sorrento are tourist towns and this obviously has an impact on the quantity and quality of urban waste. In 2014, the percentage of separate collection was 63.3% in Piano di Sorrento with a per capita production of 465.7 kg/inhabitant/year, and 63.8% in Sorrento with 775 kg/inhabitant/day. In every municipality, there is a separate collection centre (SCC). In the SCC, the citizens can deliver the recyclables from urban waste obtaining economic benefits similarly to the system described in De Feo and Polito (2015). The sociological analysis was developed by means of a structured questionnaire similar to that developed by De Feo and Polito (2015). The economic analysis was conducted in the light of the Extended Producer Responsibility (EPR) system, evaluating the money recovery from the recyclable materials theoretically contained in the residual waste. The analysis was carried out considering three real scenarios: (1) 2000, without separate collection; (2) 2008, when the Campania region of Southern Italy was suffering serious problems with the management of urban waste because the region did not have enough waste management facilities; (3) 2014, when there was an effective kerbside collection system in the two municipalities. The environmental analysis was performed for scenarios (1), (2) and (3) applying the Life Cycle Assessment (LCA) approach to the urban waste management, internal collection and external transport systems. As shown in Figure 1, in 2014, the increasing percentages of separate collection allowed to avoid the production of environmental impacts, with greater benefits for the citizens of Piano di Sorrento. On the other hand, for Sorrento it was calculated the number of theoretical additional touristic bus/day in the case of a “Zero Waste” management of the hotels in terms of avoided production of equivalent CO2. The result was obtained as the ratio between the difference of the impact produced by the hotels all operated in a normal way and the hotels all managed with a Zero Waste approach, and the impact of a single bus (as a function of the distance). Please click Additional Files below to see the full abstract

    Autism spectrum disorder and physical activity

    Get PDF
    Autism is a common developmental disorder characterized by difficulties with speech and behaviours, such as lack of social abilities and repetitive behaviours. Some studies have shown that after the intervention of physical activity, all of the social interaction ability, communication ability, stereotyped behaviour and sports skills of children and adolescents with autism have been improved, which can reduce the degree of autism. The prevalence of autism spectrum disorder (ASD) has increased dramatically and is currently estimated at 1 in 68 children. ASD is defined by two symptom dimensions including social impairments and circumscribed and repetitive behaviours and interests (American Psychiatric Association). One subgroup that has increased is those with ASD without intellectual disability who currently comprise 68% of those diagnosed. Current guidelines recommend that youth engage in ≥ 60 minutes of Physical Activity daily, with the majority being moderate-to-vigorous, and muscle strengthening activities ≥ 3 days per week. Despite the significant need, few exercise programs have been developed or adapted for children with ASD, and there is a lack of evidence-based exercise treatments. Recommendations for improving exercise intervention studies in ASD include testing of treatments in function-ally-homogeneous (narrower) subgroups with ASD using larger well-characterized samples. This is necessary as children with ASD have different tolerances for activities/tasks and functional heterogeneity will likely lead to variable treatment responsiveness. Additionally, group-based treatments will be more applicable for children with ASD without intellectual disability

    The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System

    Get PDF
    The accumulation of adipose tissue represents one of the characteristics of obesity, increasing the risk of developing correlated obesity diseases such as cardiovascular disease, type 2 diabetes, cancer, and immune diseases. Visceral adipose tissue accumulation leads to chronic low inflammation inducing an imbalanced adipokine secretion. Among these adipokines, Adiponectin is an important metabolic and inflammatory mediator. It is also known that adipose tissue is influenced by Orexin-A levels, a neuropeptide produced in the lateral hypothalamus. Adiponectin and Orexin-A are strongly decreased in obesity and are associated with metabolic and inflammatory pathways. The aim of this review was to investigate the involvement of the autonomic nervous system focusing on Adiponectin and Orexin-A after bariatric surgery. After bariatric surgery, Adiponectin and Orexin-A levels are strongly increased independently of weight loss showing that hormone increases are also attributable to a rearrangement of metabolic and inflammatory mediators. The restriction of food intake and malabsorption are not sufficient to clarify the clinical effects of bariatric surgery suggesting the involvement of neuro-hormonal feedback loops and also of mediators such as Adiponectin and Orexin-A

    Short-Term Physiological Effects of a Very Low-Calorie Ketogenic Diet: Effects on Adiponectin Levels and Inflammatory States

    Get PDF
    Adipose tissue is a multifunctional organ involved in many physiological and metabolic processes through the production of adipokines and, in particular, adiponectin. Caloric restriction is one of the most important strategies against obesity today. The very low-calorie ketogenic diet (VLCKD) represents a type of caloric restriction with very or extremely low daily food energy consumption. This study aimed to investigate the physiological effects of a VLCKD on anthropometric and biochemical parameters such as adiponectin levels, as well as analyzing oligomeric profiles and cytokine serum levels in obese subjects before and after a VLCKD. Twenty obese subjects were enrolled. At baseline and after eight weeks of intervention, anthropometric and biochemical parameters, such as adiponectin levels, were recorded. Our findings showed a significant change in the anthropometric and biochemical parameters of these obese subjects before and after a VLCKD. We found a negative correlation between adiponectin and lipid profile, visceral adipose tissue (VAT), C-reactive protein (CRP), and pro-inflammatory cytokines such as tumor necrosis factor-a (TNF-a), which confirmed the important involvement of adiponectin in metabolic and inflammatory diseases. We demonstrated the beneficial short-term effects of a VLCKD not only in the treatment of obesity but also in the establishment of obesity-correlated diseases

    The Differences in Physical Activity Levels of Male snd Female University Students

    Get PDF
    Study purpose. The aim of this study was to examine the levels of physical activity among undergraduates living in ADISU (Agency for the Right to University Study) residences in order to better understand their situations and highlight the differences between male and female students. Materials and methods. Eighty participants between the ages of 18 and 28 were enrolled in this study. A questionnaire was given to each participant who was selected for the study in order to gather general data and measure physical activity levels. Results. 60% of the students involved in this investigation are smokers; nonsmokers show a higher average than smokers, which indicates greater physical activity and higher frequency; 52.3% of female students declare not to practice any PA compared to 26.9% of male students; 9.3% of female students declare to practice PA 3 times per week, while 30.8% of male students declare to practice PA > 3 times per week. Conclusions. In conclusion, we think that studies like ours are essential for formulating plans to enhance students’ wellbeing and their academic route inside universities

    Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia

    Get PDF
    © 2020 The Authors. Alzheimer's & Dementia published by Wiley Periodicals, Inc. on behalf of Alzheimer's Association. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Introduction: The presymptomatic phase of neurodegenerative disease can last many years, with sustained cognitive function despite progressive atrophy. We investigate this phenomenon in familial frontotemporal dementia (FTD). Methods: We studied 121 presymptomatic FTD mutation carriers and 134 family members without mutations, using multivariate data-driven approach to link cognitive performance with both structural and functional magnetic resonance imaging. Atrophy and brain network connectivity were compared between groups, in relation to the time from expected symptom onset. Results: There were group differences in brain structure and function, in the absence of differences in cognitive performance. Specifically, we identified behaviorally relevant structural and functional network differences. Structure-function relationships were similar in both groups, but coupling between functional connectivity and cognition was stronger for carriers than for non-carriers, and increased with proximity to the expected onset of disease. Discussion: Our findings suggest that the maintenance of functional network connectivity enables carriers to maintain cognitive performance.K.A.T. is supported by the British Academy Postdoctoral Fellowship (PF160048) and the Guarantors of Brain (101149). J.B.R. is supported by the Wellcome Trust (103838), the Medical Research Council (SUAG/051 G101400), and the Cambridge NIHR Biomedical Research Centre. R. S.‐V. is supported by the Instituto de Salud Carlos III and the JPND network PreFrontAls (01ED1512/AC14/0013) and the Fundació Marató de TV3 (20143810). M.M and E.F are supported by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, and also a Canadian Institutes of Health Research operating grant (MOP 327387) and funding from the Weston Brain Institute. J.D.R., D.C., and K.M.M. are supported by the NIHR Queen Square Dementia Biomedical Research Unit, the NIHR UCL/H Biomedical Research Centre, and the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility. J.D.R. is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH), the MRC UK GENFI grant (MR/ M023664/1), and The Bluefield Project. F.T. is supported by the Italian Ministry of Health (Grant NET‐2011‐02346784). L.C.J. and J.V.S. are supported by the Association for Frontotemporal Dementias Research Grant 2009, ZonMw Memorabel project number 733050103 and 733050813, and the Bluefield project. R.G. is supported by Italian Ministry of Health, Ricerca Corrente. J.L. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145; SyNergy ‐ ID 390857198). The Swedish contributors C.G., L.O., and C.A. were supported by grants from JPND Prefrontals Swedish Research Council (VR) 529‐2014‐7504, JPND GENFI‐PROX Swedish Research Council (VR) 2019‐02248, Swedish Research Council (VR) 2015‐ 02926, Swedish Research Council (VR) 2018‐02754, Swedish FTD Initiative‐Schorling Foundation, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Karolinska Institutet Doctoral Funding, and StratNeuro, Swedish Demensfonden, during the conduct of the study.info:eu-repo/semantics/publishedVersio

    Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study

    Get PDF
    © The Author(s) 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background: Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers. Methods: We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Results: CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores. Conclusions: Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.This study was supported in the Netherlands by Memorabel grants from Deltaplan Dementie (ZonMw and Alzheimer Nederland; grant numbers 733050813, 733050103, 733050513), the Bluefield Project to Cure Frontotemporal Dementia, the Dioraphte foundation (grant number 1402 1300), and the European Joint Programme—Neurodegenerative Disease Research and the Netherlands Organisation for Health Research and Development (PreFrontALS: 733051042, RiMod-FTD: 733051024); in Belgium by the Mady Browaeys Fonds voor Onderzoek naar Frontotemporale Degeneratie; in the UK by the MRC UK GENFI grant (MR/M023664/1) and the JPND GENFI-PROX grant (2019-02248); JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH); ASE supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK; IJS is supported by the Alzheimer’s Association; JBR is supported by the Wellcome Trust (103838); in Spain by the Fundació Marató de TV3 (20143810 to RSV); in Germany by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy—ID 390857198) and by grant 779357 “Solve-RD” from the Horizon 2020 Research and Innovation Programme (to MS); in Sweden by grants from the Swedish FTD Initiative funded by the Schörling Foundation, grants from JPND PreFrontALS Swedish Research Council (VR) 529–2014-7504, Swedish Research Council (VR) 2015–02926, Swedish Research Council (VR) 2018–02754, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Swedish Demensfonden, Stohnes foundation, Gamla Tjänarinnor, Karolinska Institutet Doctoral Funding, and StratNeuro. HZ is a Wallenberg Scholar.info:eu-repo/semantics/publishedVersio

    A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia

    Get PDF
    © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/ by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.This study was supported in the Netherlands by two Memorabel grants from Deltaplan Dementie (The Netherlands Organisation for Health Research and Development and Alzheimer Nederland; grant numbers 733050813,733050103 and 733050513), the Bluefield Project to Cure Frontotemporal Dementia, the Dioraphte foundation (grant number 1402 1300), the European Joint Programme—Neurodegenerative Disease Research and the Netherlands Organisation for Health Research and Development (PreFrontALS: 733051042, RiMod-FTD: 733051024); V.V. and S.K. have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 666992 (EuroPOND). E.B. was supported by the Hartstichting (PPP Allowance, 2018B011); in Belgium by the Mady Browaeys Fonds voor Onderzoek naar Frontotemporale Degeneratie; in the UK by the MRC UK GENFI grant (MR/M023664/1); J.D.R. is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH); I.J.S. is supported by the Alzheimer’s Association; J.B.R. is supported by the Wellcome Trust (103838); in Spain by the Fundació Marató de TV3 (20143810 to R.S.V.); in Germany by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy—ID 390857198) and by grant 779357 ‘Solve-RD’ from the Horizon 2020 Research and Innovation Programme (to MS); in Sweden by grants from the Swedish FTD Initiative funded by the Schörling Foundation, grants from JPND PreFrontALS Swedish Research Council (VR) 529–2014-7504, Swedish Research Council (VR) 2015–02926, Swedish Research Council (VR) 2018–02754, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Swedish Demensfonden, Stohnes foundation, Gamla Tjänarinnor, Karolinska Institutet Doctoral Funding and StratNeuro. H.Z. is a Wallenberg Scholar.info:eu-repo/semantics/publishedVersio

    Impairment of episodic memory in genetic frontotemporal dementia : a GENFI study

    Get PDF
    © 2021 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Introduction: We aimed to assess episodic memory in genetic frontotemporal dementia (FTD) with the Free and Cued Selective Reminding Test (FCSRT). Methods: The FCSRT was administered in 417 presymptomatic and symptomatic mutation carriers (181 chromosome 9 open reading frame 72 [C9orf72], 163 progranulin [GRN], and 73 microtubule-associated protein tau [MAPT]) and 290 controls. Group differences and correlations with other neuropsychological tests were examined. We performed voxel-based morphometry to investigate the underlying neural substrates of the FCSRT. Results: All symptomatic mutation carrier groups and presymptomatic MAPT mutation carriers performed significantly worse on all FCSRT scores compared to controls. In the presymptomatic C9orf72 group, deficits were found on all scores except for the delayed total recall task, while no deficits were found in presymptomatic GRN mutation carriers. Performance on the FCSRT correlated with executive function, particularly in C9orf72 mutation carriers, but also with memory and naming tasks in the MAPT group. FCSRT performance also correlated with gray matter volumes of frontal, temporal, and subcortical regions in C9orf72 and GRN, but mainly temporal areas in MAPT mutation carriers. Discussion: The FCSRT detects presymptomatic deficits in C9orf72- and MAPT-associated FTD and provides important insight into the underlying cause of memory impairment in different forms of FTD.The Dementia Research Centre is supported by Alzheimer's Research UK, Alzheimer's Society, Brain Research UK, and The Wolfson Foundation. This work was supported by the NIHR UCL/H Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility, and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society, and Alzheimer's Research UK. J. D. Rohrer is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). This work was also supported by the MRC UK GENFI grant (MR/M023664/1); the Bluefield Project; the JPND GENFI-PROX grant (2019-02248); the Dioraphte Foundation (grant numbers 09-02-00); the Association for Frontotemporal Dementias Research Grant 2009; The Netherlands Organization for Scientific Research (NWO; grant HCMI 056-13-018); ZonMw Memorabel (Deltaplan Dementie, project numbers 733 050 103 and 733 050 813); JPND PreFrontAls consortium (project number 733051042). J. M. Poos is supported by a Fellowship award from Alzheimer Nederland (WE.15-2019.02). This work was conducted using the MRC Dementias Platform UK (MR/L023784/1 and MR/009076/1). Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases - Project ID No 739510.info:eu-repo/semantics/publishedVersio

    Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort

    Get PDF
    © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Background: Reduced empathy is a common symptom in frontotemporal dementia (FTD). Although empathy deficits have been extensively researched in sporadic cases, few studies have explored the differences in familial forms of FTD. Methods: Empathy was examined using a modified version of the Interpersonal Reactivity Index (mIRI) in 676 participants from the Genetic FTD Initiative: 216 mutation-negative controls, 192 C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. Using global scores from the CDR® plus NACC FTLD, mutation carriers were divided into three groups, asymptomatic (0), very mildly symptomatic/prodromal (.5), or fully symptomatic (1 or more). The mIRI Total score, as well as the subscores of Empathic Concern (EC) and Perspective Taking (PT) were assessed. Linear regression models with bootstrapping were used to assess empathy ratings across genetic groups, as well as across phenotypes in the symptomatic carriers. Neural correlates of empathy deficits were examined using a voxel-based morphometry (VBM) analysis. Results: All fully symptomatic groups scored lower on the mIRI Total, EC, and PT when compared to controls and their asymptomatic or prodromal counterparts (all p < .001). Prodromal C9orf72 expansion carriers also scored significantly lower than controls on the mIRI Total score (p = .046). In the phenotype analysis, all groups (behavioural variant FTD, primary progressive aphasia and FTD with amyotrophic lateral sclerosis) scored significantly lower than controls (all p < .007). VBM revealed an overlapping neural correlate of the mIRI Total score across genetic groups in the orbitofrontal lobe but with additional involvement in the temporal lobe, insula and basal ganglia in both the GRN and MAPT groups, and uniquely more posterior regions such as the parietal lobe and thalamus in the GRN group, and medial temporal structures in the MAPT group. Conclusions: Significant empathy deficits present in genetic FTD, particularly in symptomatic individuals and those with a bvFTD phenotype, while prodromal deficits are only seen using the mIRI in C9orf72 expansion carriers.This work was supported by the NIHR UCL/H Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility, and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK. JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). This work was also supported by the MRC UK GENFI grant (MR/M023664/1), the Bluefield Project and the JPND GENFI-PROX grant (2019-02248). Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases - Project ID No 739510. RC/CG are supported by a Frontotemporal Dementia Research Studentships in Memory of David Blechner funded through The National Brain Appeal (RCN 290173). MB is supported by a Fellowship award from the Alzheimer's Society, UK (AS-JF-19a-004-517). MB's work is also supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK. JCVS was supported by the Dioraphte Foundation grant 09-02-03-00, the Association for Frontotemporal Dementias Research Grant 2009, The Netherlands Organisation for Scientific Research grant HCMI 056-13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield project. FM received funding from the Tau Consortium and the Center for Networked Biomedical Research on Neurodegenerative Disease (CIBERNED). RS-V is supported by an Alzheimer’s Research UK Clinical Research Training Fellowship (ARUK-CRF2017B-2), and has received funding from Fundació Marató de TV3, Spain (grant no. 20143810). CG received funding from JPND-Prefrontals VR Dnr 529-2014-7504, VR 2015-02926 and 2018-02754, the Swedish FTD Inititative-Schörling Foundation, Alzheimer Foundation, Brain Foundation and Stockholm County Council ALF. MM has received funding from a Canadian Institute of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. JBR has received funding from the Wellcome Trust (103838) and is supported by the Cambridge University Centre for Frontotemporal Dementia, the Medical Research Council (SUAG/051 G101400) and the National Institute for Health Research Cambridge Biomedical Research Centre (BRC-1215-20014). EF has received funding from a CIHR grant #327387. DG received support from the EU Joint Programme – Neurodegenerative Disease Research and the Italian Ministry of Health (PreFrontALS) grant 733051042. RV has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. MO has received funding from BMBF (FTLDc).info:eu-repo/semantics/publishedVersio
    corecore