78 research outputs found

    Diethyl trans-2,5-bis­(4-methoxy­benzyl­sulfan­yl)-1,4-dimethyl-3,6-dioxopiperazine-2,5-carboxyl­ate

    Get PDF
    The title compound, C28H34N2O8S2, was synthesized as part of a project to develop synthetic routes to analogues of sporidesmins, a class of secondary metabolite produced by the filamentous fungi Chaetomium and Pithomyces sp. The complete molecule is generated by crystallographic inversion symmetry: the methoxy group is essentially coplanar with the benzene ring to which it is bonded, a mean plane fitted through the non-H atoms of the aromatic ring and the meth­oxy group having an r.m.s. deviation of 0.0140 Å. Similarly, the ester group is also essentially planar (r.m.s. deviation of a plane fitted through all non-H atoms is 0.0101 Å). There is only one independent C—H⋯O inter­action, which links together adjacent mol­ecules into a two-dimensional sheet in the bc plane

    Self-assembly of artificial microtubules

    Full text link
    Understanding the complex self-assembly of biomacromolecules is a major outstanding question. Microtubules are one example of a biopolymer that possesses characteristics quite distinct from standard synthetic polymers that are derived from its hierarchical structure. In order to understand how to design and build artificial polymers that possess features similar to those of microtubules, we have initially studied the self-assembly of model monomers into a tubule geometry. Our model monomer has a wedge shape with lateral and vertical binding sites that are designed to form tubules. We used molecular dynamics simulations to study the assembly process for a range of binding site interaction strengths. In addition to determining the optimal regime for obtaining tubules, we have calculated a diagram of the structures that form over a wide range of interaction strengths. Unexpectedly, we find that the helical tubules form, even though the monomer geometry is designed for nonhelical tubules. We present the detailed dynamics of the tubule self-assembly process and show that the interaction strengths must be in a limited range to allow rearrangement within clusters. We extended previous theoretical methods to treat our system and to calculate the boundaries between different structures in the diagram.Comment: 15 pages, 11 figure

    Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut.

    Get PDF
    The molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe-host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, these results suggest that ornithine lipids are potentially important for A. muciniphila-host interactions and support the role of host genetics as a determinant of responses to gut microbes

    Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids

    Get PDF
    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines and kill cancer cells via induction of apoptosis. Several traits that bode well for the translational potential of the ETP class of natural products include concise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sites that should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo.National Institute of General Medical Sciences (U.S.) (Grant GM089732)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipCamille & Henry Dreyfus Foundation. Teacher-Scholar Awards Progra

    Concise total synthesis of (+)-gliocladins B and C

    Get PDF
    The first total synthesis of (+)-gliocladin B is described. Our concise and enantioselective synthesis takes advantage of a new regioselective Friedel–Crafts-based strategy to provide an efficient multigram-scale access to the C3-(3′-indolyl)hexahydropyrroloindole substructure, a molecular foundation present in a significant subset of epipolythiodiketopiperazine natural alkaloids. Our first-generation solution to (+)-gliocladin B involved the stereoselective formation of (+)-12-deoxybionectin A, a plausible biosynthetic precursor. Our synthesis clarified the C15 stereochemistry of (+)-gliocladin B and allowed its full structure confirmation. Further studies of a versatile dihydroxylated diketopiperazine provided a concise and efficient synthesis of (+)-gliocladin B as well as access to (+)-gliocladin C.National Institute of General Medical Sciences (U.S.) (GM089732)Amgen Inc.National Science Foundation (U.S.) (CHE-0946721

    Polymorphism and phase transition behavior of 6,6′-bis­(chloro­meth­yl)-1,1′,4,4′-tetra­methyl-3,3′-(p-phenyl­enedimethyl­ene)bis­(piperazine-2,5-dione)

    No full text
    A crystallographic investigation of the title compound, C22H28Cl2N4O4, using crystals obtained under different crystallization conditions, revealed the presence of two distinct polymorphic forms. The mol­ecular conformation in the two polymorphs is very different: one adopts a ‘C’ shape, whereas the other adopts an ‘S’ shape. In the latter, the molecule lies across a crystallographic twofold axis. The ‘S’-shaped polymorph undergoes a reversible ortho­rhom­bic-to-monoclinic phase transition on cooling, whereas the structure of the ‘C’-shaped polymorph is temperature insensitive

    Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates

    No full text
    Diagnostic assays with the sensitivity required to improve cancer therapeutics depend on the development of new signal amplification technologies. Herein, we report the development and application of a novel amplification system which utilizes latent quinone methides (QMs) activated by alkaline phosphatase (AP) for signal amplification in solid-phase immunohistochemical (IHC) assays. Phosphate-protected QM precursor substrates were prepared and conjugated to either biotin or a fluorophore through an amine-functionalized linker group. Upon reaction with AP, the phosphate group is cleaved, followed by elimination of the leaving group and formation of the highly reactive and short-lived QM. The QMs either react with tissue nucleophiles in close proximity to their site of generation, or are quenched by nucleophiles in the reaction media. The reporter molecules that covalently bind to the tissue were then detected visually by fluorescence microscopy in the case of fluorophore reporters, or brightfield microscopy using diaminobenzidine (DAB) in the case of biotin reporters. With multiple reporters deposited per enzyme, significant signal amplification was observed utilizing QM precursor substrates containing either benzyl difluoro or benzyl monofluoro leaving group functionalities. However, the benzyl monofluoro leaving group gave superior results with respect to both signal intensity and discretion, the latter of which was found to be imperative for use in diagnostic IHC assays
    • …
    corecore