89 research outputs found
Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012
We report on the kinematics of two interacting CMEs observed on 13 and 14
June 2012. Both CMEs originated from the same active region NOAA 11504. After
their launches which were separated by several hours, they were observed to
interact at a distance of 100 Rs from the Sun. The interaction led to a
moderate geomagnetic storm at the Earth with Dst index of approximately, -86
nT. The kinematics of the two CMEs is estimated using data from the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar
Terrestrial Relations Observatory (STEREO). Assuming a head-on collision
scenario, we find that the collision is inelastic in nature. Further, the
signatures of their interaction are examined using the in situ observations
obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is
also found that this interaction event led to the strongest sudden storm
commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The
SSC was of long duration, approximately 20 hours. The role of interacting CMEs
in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa
Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial
BACKGROUND: Restenosis after percutaneous coronary intervention (PCI) is a major problem affecting 15% to 30% of patients after stent placement. No oral agent has shown a beneficial effect on restenosis or on associated major adverse cardiovascular events. In limited trials, the oral agent tranilast has been shown to decrease the frequency of angiographic restenosis after PCI. METHODS AND RESULTS: In this double-blind, randomized, placebo-controlled trial of tranilast (300 and 450 mg BID for 1 or 3 months), 11 484 patients were enrolled. Enrollment and drug were initiated within 4 hours after successful PCI of at least 1 vessel. The primary end point was the first occurrence of death, myocardial infarction, or ischemia-driven target vessel revascularization within 9 months and was 15.8% in the placebo group and 15.5% to 16.1% in the tranilast groups (P=0.77 to 0.81). Myocardial infarction was the only component of major adverse cardiovascular events to show some evidence of a reduction with tranilast (450 mg BID for 3 months): 1.1% versus 1.8% with placebo (P=0.061 for intent-to-treat population). The primary reason for not completing treatment was > or =1 hepatic laboratory test abnormality (11.4% versus 0.2% with placebo, P<0.01). In the angiographic substudy composed of 2018 patients, minimal lumen diameter (MLD) was measured by quantitative coronary angiography. At follow-up, MLD was 1.76+/-0.77 mm in the placebo group, which was not different from MLD in the tranilast groups (1.72 to 1.78+/-0.76 to 80 mm, P=0.49 to 0.89). In a subset of these patients (n=1107), intravascular ultrasound was performed at follow-up. Plaque volume was not different between the placebo and tranilast groups (39.3 versus 37.5 to 46.1 mm(3), respectively; P=0.16 to 0.72). CONCLUSIONS: Tranilast does not improve the quantitative measures of restenosis (angiographic and intravascular ultrasound) or its clinical sequelae
Spanning forests and the q-state Potts model in the limit q \to 0
We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta
J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially,
this limit gives rise to the generating polynomial of spanning forests;
physically, it provides information about the Potts-model phase diagram in the
neighborhood of (q,v) = (0,0). We have studied this model on the square and
triangular lattices, using a transfer-matrix approach at both real and complex
values of w. For both lattices, we have computed the symbolic transfer matrices
for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves
of partition-function zeros in the complex w-plane. For real w, we find two
distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp.
w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w >
w_0 we find a non-critical disordered phase, while for w < w_0 our results are
compatible with a massless Berker-Kadanoff phase with conformal charge c = -2
and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w =
w_0 we find a "first-order critical point": the first derivative of the free
energy is discontinuous at w_0, while the correlation length diverges as w
\downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0
seems to be the same for both lattices and it differs from that of the
Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1,
the leading thermal scaling dimension is x_{T,1} = 0, and the critical
exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65
Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and
forests_tri_2-9P.m. Final journal versio
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Machine learning-based investigation of the association between CMEs and filaments
YesIn this work we study the association between eruptive filaments/prominences and coronal mass ejections (CMEs) using machine learning-based algorithms that analyse the solar data available between January 1996 and December 2001. The Support Vector Machine (SVM) learning algorithm is used for the purpose of knowledge extraction from the association results. The aim is to identify patterns of associations that can be represented using SVM learning rules for the subsequent use in near real-time and reliable CME prediction systems. Timing and location data in the NGDC filament catalogue and the SOHO/LASCO CME catalogue are processed to associate filaments with CMEs. In the previous studies which classified CMEs into gradual and impulsive CMEs, the associations were refined based on CME speed and acceleration. Then the associated pairs were refined manually to increase the accuracy of the training dataset. In the current study, a data- mining system has been created to process and associate filament and CME data, which are arranged in numerical training vectors. Then the data are fed to SVMs to extract the embedded knowledge and provide the learning rules that could have the potential, in the future, to provide automated predictions of CMEs. The features representing the event time (average of the start and end times), duration, type and extent of the filaments are extracted from all the associated and not-associated filaments and converted to a numerical format that is suitable for SVM use. Several validation and verification methods are used on the extracted dataset to determine if CMEs can be predicted solely and efficiently based on the associated filaments. More than 14000 experiments are carried out to optimise the SVM and determine the input features that provide the best performance
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
- âŠ