223 research outputs found

    Functional Callan-Symanzik equation for QED

    Get PDF
    An exact evolution equation, the functional generalization of the Callan-Symanzik method, is given for the effective action of QED where the electron mass is used to turn the quantum fluctuations on gradually. The usual renormalization group equations are recovered in the leading order but no Landau pole appears.Comment: 9 pages, no figure

    Update on Fermion Mass Models with an Anomalous Horizontal U(1) Symmetry

    Full text link
    We reconsider models of fermion masses and mixings based on a gauge anomalous horizontal U(1) symmetry. In the simplest model with a single flavon field and horizontal charges of the same sign for all Standard Model fields, only very few charge assignements are allowed when all experimental data, including neutrino oscillation data, is taken into account. We show that a precise description of the observed fermion masses and mixing angles can easily be obtained by generating sets of the order one parameters left unconstrained by the U(1) symmetry. The corresponding Yukawa matrices show several interesting features which may be important for flavour changing neutral currents and CP violation effects in supersymmetric models.Comment: 23 pages, 8 figure

    The Price of WMAP Inflation in Supergravity

    Get PDF
    The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilised by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilising the moduli via either D- or F-terms in the effective potential, and survey possible inflationary models in the presence of D-term stabilisation.Comment: 15 pages, 6 figures, plain Late

    From simplicial Chern-Simons theory to the shadow invariant II

    Full text link
    This is the second of a series of papers in which we introduce and study a rigorous "simplicial" realization of the non-Abelian Chern-Simons path integral for manifolds M of the form M = Sigma x S1 and arbitrary simply-connected compact structure groups G. More precisely, we introduce, for general links L in M, a rigorous simplicial version WLO_{rig}(L) of the corresponding Wilson loop observable WLO(L) in the so-called "torus gauge" by Blau and Thompson (Nucl. Phys. B408(2):345-390, 1993). For a simple class of links L we then evaluate WLO_{rig}(L) explicitly in a non-perturbative way, finding agreement with Turaev's shadow invariant |L|.Comment: 53 pages, 1 figure. Some minor changes and corrections have been mad

    Renormalization of composite operators

    Get PDF
    The blocked composite operators are defined in the one-component Euclidean scalar field theory, and shown to generate a linear transformation of the operators, the operator mixing. This transformation allows us to introduce the parallel transport of the operators along the RG trajectory. The connection on this one-dimensional manifold governs the scale evolution of the operator mixing. It is shown that the solution of the eigenvalue problem of the connection gives the various scaling regimes and the relevant operators there. The relation to perturbative renormalization is also discussed in the framework of the Ď•3\phi^3 theory in dimension d=6d=6.Comment: 24 pages, revtex (accepted by Phys. Rev. D), changes in introduction and summar

    CP Violation beyond the Standard Model

    Get PDF
    In this talk a number of broad issues are raised about the origins of CP violation and how to test the ideas.Comment: 17 pages, LaTeX, 6 postscript figures. Uses iopart10.clo, iopart12.clo and iopart.cls. Plenary talk given at the BSM Phenomenology Workshop, Durham, UK, 6-11 May 2001. To appear in the proceeding

    Tools for Deconstructing Gauge Theories in AdS5

    Get PDF
    We employ analytical methods to study deconstruction of 5D gauge theories in the AdS5 background. We demonstrate that using the so-called q-Bessel functions allows a quantitative analysis of the deconstructed setup. Our study clarifies the relation of deconstruction with 5D warped theories.Comment: 30 pages; v2: several refinements, references adde

    Kaon Zero-Point Fluctuations in Neutron Star Matter

    Get PDF
    We investigate the contribution of zero-point motion, arising from fluctuations in kaon modes, to the ground state properties of neutron star matter containing a Bose condensate of kaons. The zero-point energy is derived via the thermodynamic partition function, by integrating out fluctuations for an arbitrary value of the condensate field. It is shown that the vacuum counterterms of the chiral Lagrangian ensure the cancellation of divergences dependent on ÎĽ\mu, the charge chemical potential, which may be regarded as an external vector potential. The total grand potential, consisting of the tree-level potential, the zero-point contribution, and the counterterm potential, is extremized to yield a locally charge neutral, beta-equilibrated and minimum energy ground state. In some regions of parameter space we encounter the well-known problem of a complex effective potential. Where the potential is real and solutions can be obtained, the contributions from fluctuations are found to be small in comparison with tree-level contributions.Comment: 40 pages RevTeX, 3 epsf figure

    Diffractive Dissociation In The Interacting Gluon Model

    Get PDF
    We have extended the Interacting Gluon Model (IGM) to calculate diffractive mass spectra generated in hadronic collisions. We show that it is possible to treat both diffractive and non-diffractive events on the same footing, in terms of gluon-gluon collisions. A systematic analysis of available data is performed. The energy dependence of diffractive mass spectra is addressed. They show a moderate narrowing at increasing energies. Predictions for LHC energies are presented.Comment: 12 pages, latex, 14 figures (PostScript Files included); accepted for publication in Phys. Rev. D (Feb.97

    Neutrino Unification

    Get PDF
    Present neutrino data are consistent with neutrino masses arising from a common seed at some ``neutrino unification'' scale MXM_X. Such a simple theoretical ansatz naturally leads to quasi-degenerate neutrinos that could lie in the electron-volt range with neutrino mass splittings induced by renormalization effects associated with supersymmetric thresholds. In such a scheme the leptonic analogue of the Cabibbo angle θ⊙\theta_{\odot} describing solar neutrino oscillations is nearly maximal. Its exact value is correlated with the smallness of θreactor\theta_{reactor}. These features agree both with latest data on the solar neutrino spectra and with the reactor neutrino data. The two leading mass-eigenstate neutrinos present in \ne form a pseudo-Dirac neutrino, avoiding conflict with neutrinoless double beta decay.Comment: RevTex format, 2 figures, 4 pages, a few new references, no other important change, figures unchanged, version to be published in PR
    • …
    corecore