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1. Introduction

The framework introduced by Randall and Sundrum in ref. [1] has been playing an impor-

tant role in high-energy physics in the last years. The Randall-Sundrum setup involves 5D

spacetime with the line element

ds2 = a2(x5)dxµdxµ − dx2
5 , (1.1)

and the fifth dimension truncated at x5 = 0 by the ultraviolet (UV) brane and at x5 = L by

the infrared (IR) brane. The scale (warp) factor multiplying the 4D Minkowski background

metric varies along the fifth dimension, which generates a hierarchy of scales of order

a(0)/a(L) between the UV and the IR branes. For example, for the AdS5 spacetime the

warp factor varies exponentially and a huge hierarchy can easily be generated.

The original motivation was to explain in this way the hierarchy between the Planck

scale and the electroweak scale. However it has become clear that the scope of application

is much wider. In particular, it is interesting to consider situations where the gravitational
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degrees of freedom can be decoupled. In this case one deals with 5D theories of gauge and

matter fields in a fixed background of the form of eq. (1.1). This approach has turned

out to be fruitful for constructing realistic models of the Higgs sector [2], Higgsless elec-

troweak breaking [3] and supersymmetry breaking [4]. Furthermore, AdS/CFT [5] applied

to the Randall-Sundrum background [6] suggests that these models are dual descriptions

of purely four-dimensional strongly coupled physics. There is also a connection between

field-theoretical 5D gauge theories in warped backgrounds and the low-energy physics of

pions and vector resonances [7], known as AdS/QCD.

Gauge theories in D > 4 dimensions possess an intrinsic cutoff scale. The gauge

coupling gD has dimension [length]D/2−2; therefore at high energies scattering amplitudes

grow as ED/2−2, leading to strong coupling in the UV. Perturbative computations have to

be cut off below the strong coupling scale. In some phenomenological applications strong

coupling occurs, in fact, not far from the TeV scale. Thus it is often desirable to consider

a UV completion of higher dimensional theories so as to understand possible cutoff effects.

Typically, this UV completion is assumed to be some sort of string theory.

Deconstruction [8] is another option to model cutoff effects in higher dimensional gauge

theories. It is a four-dimensional framework that typically involves a product gauge group

GN and a set of bifundamental Higgs fields (the links). With an appropriate choice of

representations and vev’s of the links, such a setup, at low energies, reproduces the spec-

trum and interactions of a higher-dimensional gauge theory with the gauge group G. The

matching holds up to a certain deviation scale ΛD, related to the magnitude of the link

vev’s. This deviation scale is identified with the cutoff of the higher-dimensional theory.

Above ΛD, deconstruction provides a UV completion in terms of a purely four-dimensional,

weakly coupled and, possibly, renormalizable gauge theory dynamics.

Deconstruction of 5D gauge theories in the AdS5 Randall-Sundrum background was

considered in refs. [9 – 13]. The warped fifth dimension was represented by a chain of

bifundamental links Φj with the vev varying as 〈Φj〉 ∼ qj. This setup turned out to be

useful for clarifying several issues concerning the evolution of gauge couplings in AdS5 [10 –

12]. However, these studies suffer from certain limitations. While computations in AdS5 can

be performed (both at the tree level and at the loop level) using familiar Bessel functions, no

analytical methods have been available so far to handle computations in the deconstructed

model. In particular, the spectrum and interactions of the massive gauge bosons have been

determined only numerically. Some analytical results have been obtained, but only for

q ¿ 1, in which case deconstruction does not have an obvious 5D interpretation. For this

reason the relation between deconstruction and the AdS5 theory was somewhat obscure.

It was not even clear if deconstruction could really reproduce the AdS5 physics in its entire

perturbativity range. Furthermore, because of these technical problems, the deconstructed

AdS5 setup has not been really useful for phenomenological applications.

In this paper we fill this gap. We present analytical methods to handle deconstructed

AdS5 models. The tools are provided by the mathematical theory of q-difference equations

and their solutions. One of its branches deals with the so-called q-Bessel functions, which

generalize the ordinary Bessel functions. We show that the q-Bessel functions are appro-

priate to describe the spectrum and interactions of the deconstructed AdS5 models. With
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these methods at hand, the calculabilities of the AdS5 gauge theory and its deconstructed

version stand on an equal footing.

The technical results we obtain help to clarify the relation between the 5D warped

gauge theories and deconstruction. It was argued in the previous works [10, 11] that de-

construction realizes a position-dependent cutoff. With the new methods at our disposal

we are able this notion more precise and specify the parameter range in which deconstruc-

tion adequately approximates the 5D theory. The position-dependent cutoff is realized in

the following sense. The IR brane scattering amplitudes in the 5D theory are reproduced

up to the scale ΛIR = Λa(L). On the other hand, the UV brane t-channel amplitudes

are reproduced up to ΛUV = Λa(0), larger by the factor a(0)/a(L). The non-trivial thing

about the latter result is that the spectra of massive excitations in the two theories deviate

at a much lower scale, of order ΛIR. Matching of the UV brane t-channel amplitudes in the

two theories holds in spite of the fact that the number and the couplings of the exchanged

massive gauge bosons are different. Our results also imply that, up to the scale ΛUV, the

holographic interpretation of the deconstructed AdS5 models is similar to that established

in [6] for the 5D models.

The paper is organized as follows. In section 2 we review the necessary technical ma-

terial concerning gauge theories in AdS5. In section 3 we study the deconstructed model

and derive analytical formulas for the spectrum and propagators of the gauge bosons. The

detailed discussion of these results and their consequences is presented in section 4. Sec-

tion 5 contains a summary and points at future applications of our results. Deconstruction

of 5D gauge theories with most general boundary conditions is discussed in A. Finally, B

contains a detailed and self-contained review of the theory of q-Bessel functions.

2. Review of gauge theory in AdS5

In this section we summarize basic properties of 5D gauge theories in the Randall-Sundrum-

type background. The fifth dimension is an interval (equivalently, the orbifold S1/Z2)

parametrized by x5 ∈ [0, L]. Two boundary branes are located at x5 = 0 (the UV brane)

and at x5 = L (the IR brane). The gravitational background is that of the AdS5 geometry:

ds2 = a2(x5)ηµνdxµdxν − dx2
5 a(x5) = e−kx5 , (2.1)

where k is the curvature scale and µ, ν, · · · = 0 . . . 3 label the 4D coordinates. The presence

of the warp factor generates a hierarchy of scales of order 1/aL between the UV and the IR

brane, where aL ≡ a(L) = e−kL. In the original Randall-Sundrum model aL ∼ 10−15, so

as to explain the hierarchy between the electroweak and the Planck scale. In our analysis

we allow for arbitrary aL ¿ 1.

In the following we will focus on the dynamics of gauge theories on such a background,

while fluctuations of the 5D metric will be ignored. The practical reason is that decon-

struction of gravity encounters certain technical problems [14, 15], which we prefer to avoid

here. Formally speaking, gravity can always be decoupled by taking the limit M5 → ∞,

where M5 is the 5D Planck scale. More precisely, gravity couples strongly at the IR brane

at the scale ΛG(L) ∼ aLMPlanck ∼ aLM
3/2
5 /k1/2, while at the UV brane it becomes strongly
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coupled only at ΛG(0) ∼ MPlanck. We assume we always deal with energies far below the

respective gravity strong-coupling scales, and concentrate exclusively on the dynamics of

the gauge sector.

We consider a 5D gauge field AM = (Aµ, A5) propagating in the background of

eq. (2.1). The quadratic part of the action takes the form

S5 =

∫

d4x

∫ L

0
dx5

1

g2
5

(

−1

4
FµνFµν +

a2(x5)

2
(∂5Aµ − ∂µA5)

2

)

. (2.2)

We choose the boundary conditions as

∂5Aµ(0) = ∂5Aµ(L) = 0 A5(0) = A5(L) = 0 . (2.3)

The Neumann boundary conditions for Aµ allow the existence of a 4D zero mode, so

that 4D gauge symmetry survives below the compactification scale. Alternatively, one can

impose Dirichlet boundary conditions for Aµ (and Neumann for A5), in which case gauge

symmetry is entirely broken at low energies. For completeness we review this case and its

deconstructed version in A.

2.1 Spectrum and propagators

There are several ways of approaching higher dimensional theories. Most often, higher

dimensional fields are traded for an infinite number of 4D Kaluza-Klein (KK) modes.

Another approach relies on 5D propagators, which effectively sum up the contribution of

the whole KK tower. Finally, it is sometimes useful to employ the so-called holographic

approach, which consists in constructing an effective action for the boundary values of

the bulk fields. Below we review the necessary technical background for each approach.

Of course, these are merely different methods of organizing computations, and physical

conclusions must be the same, regardless of which approach is used.

2.1.1 Kaluza-Klein approach

The gauge field is decomposed into KK modes as follows

Aµ(x, x5) =

∞
∑

n=0

fn(x5)A
n
µ(x) , A5(x, x5) =

∞
∑

n=1

∂5fn(x5)

mn
An

5 (x) . (2.4)

The modes An
5 are eaten by the massive gauge fields but it is not necessary to fix the gauge

at this stage. The KK profiles fn should be chosen such that the quadratic action (2.2) is

diagonal in the KK basis:

S5 =

∫

d4x
∑

n

(

−1

4
Fn

µνFn
µν +

1

2
(mnAn

µ − ∂µAn
5 )2

)

. (2.5)

This is obtained when fn are solutions of the equation of motion

∂2
5fn − 2k∂5fn + m2

na−2(x5)fn = 0 , (2.6)
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satisfy the Neumann boundary conditions

∂5fn(0) = ∂5fn(L) = 0 , (2.7)

and are normalized as g−2
5

∫ L
0 f2

n = 1. The solution is given by [16]

f0 =
g5√
L

,

fn = Ana−1(x5)

[

Y0

(mn

k

)

J1

(

mn

ka(x5)

)

− J0

(mn

k

)

Y1

(

mn

ka(x5)

)]

, n > 0 , (2.8)

with the normalization constant

An =
πmng5√

2k





(

J0(
mn
k )

J0(
mn
kaL

)

)2

− 1





−1/2

=
πmng5√

2k





(

Y0(
mn
k )

Y0(
mn
kaL

)

)2

− 1





−1/2

. (2.9)

Thus, the 5D gauge theory is rewritten in terms of a tower of 4D vector fields An
µ

with masses mn (An
5 ’s are eaten). The zero mode A0

µ corresponds to m0 = 0. Its profile

f0 is a constant, thus the massless mode couples to all matter with equal strength given

by g0 = g5/
√

L. For the massive modes, the mass spectrum is given by solutions of the

equation

Y0

(mn

k

)

J0

(

mn

kaL

)

− J0

(mn

k

)

Y0

(

mn

kaL

)

= 0 , (2.10)

which can be well approximated by

mn ≈ πkaL(n − 1/4) . (2.11)

The spectrum is approximately linearly spaced with the mass gap MKK ∼ kaL. The

massive modes couple non-universally to matter, the coupling depending on both the KK

number and the position in the extra dimension. In particular, the couplings to the UV

and IR branes are determined by the boundary values of the KK profiles

fn(0) =

√
2kg5

√

(

Y0(
mn
k

)

Y0( mn
kaL

)

)2

− 1

, fn(L) =

√
2kg5

(

Y0(mn
k

)

Y0(
mn
kaL

)

)

√

(

Y0(
mn
k

)

Y0(
mn
kaL

)

)2

− 1

. (2.12)

Approximating the Bessel functions we find |fn(L)|2 ≈ 2kg2
5 , so that all the KK modes

couple to the IR brane with approximately equal strength. On the other hand |fn(0)|2 ≈
2kaLg2

5(πk/2mn) log−2(mn/k) for mn ¿ k and |fn(0)|2 ≈ 2kaLg2
5 for mn À k. This shows

that KK modes are localized toward the IR brane and couple very weakly to the UV brane.

For this reason physics on the UV brane may remain perturbative at energies much larger

than the KK mass gap.
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2.1.2 Position-space approach

An alternative approach to quantum computations in higher dimensions relies on 5D prop-

agators. Since 4D Poincaré invariance is preserved, it is convenient to work in a mixed

representation of 4D momentum space and position space in the extra dimension which,

for brevity, we call the position space representation:

Pµν(p2, x5, y5) =

∫

d4xeipx〈TAµ(x, x5)Aν(0, y5)〉 . (2.13)

At tree level the propagator is an inverse of the kinetic operator (Fourier transformed to 4D

momentum space). We choose the gauge-fixing term Lgf = − 1
2ξg2

5
(∂µAµ− ξ∂5(a

2(x5)A5))
2.

Then the propagator satisfies the equation

1

g2
5

(

[−p2 − ∂5(a
2(x5)∂5)]ηµν + (1 − 1/ξ)pµpν

)

Pνρ(p
2, x5, y5) = iηµρδ(x5 − y5) (2.14)

and the Neumann boundary conditions ∂x5Pµν(p2, x5, y5)|x5=0 = ∂x5Pµν(p2, x5, y5)|x5=L =

0. The solution is given by [17]

Pµν(p2, x5, y5) =

(

ηµν − pµpν

p2

)

P (p2, x5, y5) +
pµpν

p2
P (p2/ξ, x5, y5) (2.15)

where

P (p2, x5, y5) = (2.16)

=
iπg2

5

2k

[Y0(
p
k )J1(

p
ka(x5)) − J0(

p
k )Y1(

p
ka(x5))][Y0(

p
kaL

)J1(
p

ka(y5)) − J0(
p

kaL
)Y1(

p
ka(y5))]

a(x5)a(y5)[Y0(
p
k )J0(

p
kaL

) − J0(
p
k )Y0(

p
kaL

)]

for x5 ≤ y5 (the propagator is of course symmetric under the exchange x5 ↔ y5).

We will focus on brane-to-brane propagators defined as

PUV(p2) ≡ P (p2, 0, 0) , PIR(p2) ≡ P (p2, L, L) , PBB(p2) ≡ P (p2, 0, L) . (2.17)

They read

PUV(p2) =
ig2

5

p

Y0(
p

kaL
)J1(

p
k ) − J0(

p
kaL

)Y1(
p
k )

Y0(
p
k )J0(

p
kaL

) − J0(
p
k )Y0(

p
kaL

)
,

PIR(p2) =
ig2

5

aLp

Y0(
p
k )J1(

p
kaL

) − J0(
p
k )Y1(

p
kaL

)

Y0(
p
k )J0(

p
kaL

) − J0(
p
k )Y0(

p
kaL

)
,

PBB(p2) =
2ikg2

5

πp2

1

Y0(
p
k )J0(

p
kaL

) − J0(
p
k )Y0(

p
kaL

)
. (2.18)

Consider the Euclidean momenta p2 = −p2
E. For pE ¿ kaL all propagators approximate

those of a 4D massless gauge boson with the gauge coupling g0 = g5/
√

L:

PUV(−p2
E) ≈ PIR(−p2

E) ≈ PBB(−p2
E) ≈ ig2

0

p2
E

. (2.19)
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Above the KK mass gap the momentum dependence of the propagators crucially depends

on the position in the extra dimension. For aLk ¿ pE ¿ k one finds

PUV(−p2
E) ≈ ig2

5

pE

K1(
pE
k )

K0(
pE
k )

≈ 1

log(2ke−γ/pE)

ig2
5k

p2
E

,

PIR(−p2
E) ≈ ig2

5

aLpE
,

PBB(−p2
E) ≈

√

πk

2aL

g2
5

log(2ke−γ/pE)

i

p
3/2
E

e
− pE

aLk . (2.20)

The propagator on the IR brane shows a 1/E fall-off, which is the same behaviour as for

5D flat spacetime. Propagation between the branes is exponentially suppressed, which is

also a characteristic feature of higher dimensional theories above the compactification scale.

But on the UV brane the fifth dimension is screened: the propagator exhibits the usual

4D 1/E2 behaviour, up to a “classical running” encoded in the logarithmic form factor.

Such behaviour persists all the way up to the curvature scale. At even higher energies, for

pE À k:

PUV(−p2
E) ≈ ig2

5

pE

K1(
pE
k )

K0(
pE
k )

≈ ig2
5

pE
, PIR(−p2

E) ≈ ig2
5

aLpE
, PBB(−p2

E) ≈ ig2
5

a
1/2
L pE

e
− pE

aLk .

(2.21)

At very high energies, larger than the curvature scale, the propagators have an energy

dependence analogous to that of the propagators in the 5D flat spacetime. The UV and

IR brane propagators differ only by the inverse warp factor multiplying the latter.

The connection between the KK and the 5D position space approach is given by the

spectral formula

P (p2, x5, y5) = −i
∑

n

fn(x5)fn(y5)

p2 − m2
n

. (2.22)

This shows that the position propagator describes collective propagation of all KK modes

between x5 and y5. The KK masses and wave functions are given, respectively, by the

poles and residua of the propagator. The position propagator is thus a very convenient

object, which encodes information about the whole KK spectrum. Moreover, locality in

the 5th dimension is explicit in this formalism. For this reason, it is particularly useful for

the computation of scattering amplitudes of fields localized on 4D branes.

2.1.3 Holographic approach

In the holographic approach we single out the UV boundary value of the 5D field, treating

it as a distinct variable from the bulk or the IR brane values. The latter degrees of

freedom are integrated out, leaving a non-local effective action Seff for the UV boundary

value. At the classical level, integrating out amounts to evaluating the 5D action on a field

configuration that satisfies the bulk equations of motion and the IR boundary conditions,

with the UV brane value Āµ(p) left as the “low energy variable”. In the gauge ξ = 1, such

a configuration can be written as

Aµ(p, x5) =
P (p2, x5, 0)

P (p2, 0, 0)
Āµ(p) , (2.23)
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where the propagator P (p2, x5, y5) was defined in eq. (2.16). Inserting this into the 5D

action we obtain the effective action for Āµ(p):

Seff = −1

2

∫

d4p

(2π)4
Āµ(p)Πµν Āν(p) , Πµν = − i

PUV(p2)
ηµν . (2.24)

We see that, at tree level, the self-energy of Āµ(p) is an inverse of the UV brane-to-brane

propagator in (2.18).

In principle, this procedure can be applied to arbitrary geometries, whenever the

boundary value is for some reason a convenient low energy variable.1 However for the

background of eq. (2.1) the AdS/CFT correspondence [5] applied to the Randall-Sundrum

geometry [6] gives it a special meaning. The gauge theory we study here is dual to some

4D strongly coupled CFT, with a 4D gauge field weakly coupled to a conserved current

Jµ of the CFT. Hence Πµν represents the connected correlator of two conserved currents,

Jµ and Jν , in the dual 4D theory. This allows us to understand the peculiar features of

the UV propagator described in the previous subsection. In particular, the form of PUV

in the regime kaL ¿ pE ¿ k (see eq. (2.20)) is fixed by conformal invariance of the 4D

holographic theory.

Cutting off AdS5 with the UV brane is interpreted as an explicit breaking of conformal

invariance in the 4D dual by a UV cutoff of order k. On the other hand, the presence of the

IR brane is interpreted as a spontaneous breaking of conformal invariance in the 4D theory.

This results in a mass gap of order kaL and in a discrete spectrum of resonances that are

identified (up to a mixing with Āµ) with the KK modes in the 5D picture. According to

AdS/CFT, the tree-level approximation of the 5D theory corresponds to a large-N limit

in the dual theory. In fact, it is well known that, in the large-N limit, the exact two-point

correlator function can be written as a sum of infinitely narrow resonances, in agreement

with (2.22).

2.2 Scales

We close this section with a discussion of the energy range where perturbative gauge

theories can be applied. As we are interested in the parametric dependence only, we do

not display any numerical factors explicitly.

So far we have encountered two scales: the curvature scale k and the KK scale MKK ∼
aLk, that mark a qualitative change in the behaviour of the propagators. In 5D gauge

theories the gauge coupling has dimension [length]1/2, therefore another scale 1/g2
5 appears.

This quantity is related to the strong coupling scale of the theory. A simple way to see this

is by coupling the gauge field to 4D matter sectors localized on the branes, say, to massless

fermions. At tree level, t-channel amplitudes for two-by-two scatterings of the brane fields

depend on the scattering energy as MUV,IR ∼ E2PUV,IR(−E2). Below the KK scale the

theory is effectively four-dimensional, thus the amplitudes do not grow with energy. One

finds MUV,IR ∼ g2
5/L = g2

0 and, of course, we assume that the zero mode gauge coupling g0

1This is the case, for example, in models with the SM gauge fields living in the bulk and the SM matter

localized on the UV brane [18].
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is perturbative. Once we cross the KK scale the IR brane-to-brane propagator switches to

a 5D behaviour. The IR amplitudes then grow as MIR ∼ a−1
L Eg2

5 and violate the unitarity

bound at E ∼ ΛS(L) = aL/g2
5 . Above ΛS(L) the IR brane fields are strongly coupled and

the perturbative description of the IR physics is no longer valid. On the other hand, for

MKK < E < k the UV amplitudes evolve only logarithmically, MUV ∼ g2
5k/ log(k/E) (we

assume that the amplitude remains perturbative in this energy regime). The linear growth

starts only above the curvature scale: for E > k we find MUV ∼ Eg2
5 leading to the strong

coupling at E ∼ ΛS(0) = 1/g2
5 .

We can generalize the preceding arguments by inserting 4D test matter fields at an

arbitrary position in the fifth dimension. The obvious outcome is that the strong coupling

scale depends on the position as

ΛS(x5) =
a(x5)

g2
5

. (2.25)

The strong coupling scale sets a limit on the validity range of the gauge theory. We are

forced to cut off perturbative computations below ΛS and assume that some UV completion

(or a non-perturbative formulation) properly describes the physics above ΛS . Since the

maximum validity range depends on the position, it is natural to consider a position-

dependent cutoff, Λ(x5) = a(x5)Λ, with Λ . 1/g2
5 . Deconstruction provides a framework

to introduce such a cutoff in a gauge-invariant way.

We have argued that UV brane physics remains perturbative at energies much higher

than the strong coupling scale on the IR brane. This is possible because of the locality

of higher dimensional gauge theories. At virtualities E bigger than the KK mass gap, the

gauge bosons propagate only a distance of order E−1 into the bulk, and simply do not

reach the strongly coupled region close to the IR brane, as can be seen explicitly in the

approximate Euclidean brane-to-brane propagator of (2.21). In fact, for E > MKK the

Euclidean UV brane propagators would remain essentially unchanged if the IR brane were

removed, that is for L → ∞.

There is however a caveat. For time-like momenta, the UV brane propagators have

poles at the position of the KK masses. At the quantum level, these poles will correspond

to resonances with finite widths. Measuring these widths, a UV observer can determine

whether there is strong coupling somewhere else, in particular in the IR brane. This requires

at least an energy resolution of the order of the KK mass splittings. We can understand

this in an alternative way by looking at the propagator between the two branes, which is

no longer exponentially suppressed for time-like momenta, even in the regime p À kaL.

Instead, it has an oscillatory behaviour, so that in principle a UV brane observer is able

to probe the strong coupling of the IR brane physics. In practice, however, because the

UV scattered particles have non-zero energy spread Γ, one must average over this range of

energies, and the interference of the different modes leads to an exponential suppression.

This effect can be taken into account by evaluating the propagators at
√

p2 = 2E + iΓ,

which leads to a suppression factor ∼ exp(−Γ/aLk) [19]. Hence, we see again that the

strongly coupled IR brane physics remains screened from the UV brane observers, as long

as energy resolution is worse than the spacing between KK modes ∼ aLk.
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3. Deconstruction

We move to the deconstruction of warped gauge theories [9 – 11]. Our goal for this section

is to perform an analytical computation of the spectrum and propagators in a model

approximating the gauge theory in the Randall-Sundrum background. A detailed physical

discussion of the results is postponed to section 4. For definiteness, we restrict in the

following to deconstructing 5D theories with U(1) gauge group. For U(n) or SU(n) the

analysis is very similar and poses no additional technical problems.

We consider a U(1)N+1 gauge theory with N complex scalars (the links) Φj with

charges (1j−1,−1j). The action is given by

S4 =

∫

d4x



− 1

4g2

N
∑

j=0

F j
µνF j

µν +

N
∑

j=1

|∂µΦj + i(Aj−1
µ − Aj

µ)Φj|2 + V (|Φj |2)



 . (3.1)

The gauge coupling of each gauge group is set equal to g. Moreover, at tree level we forbid

kinetic operators F j
µνF k

µν with j 6= k or higher-dimensional operators coupling different

links. These arbitrary choices are meant to reproduce certain features of the 5D theory

such as 5D coordinate invariance and locality. Furthermore, we assume that the scalar

potential is such that all the links acquire vev’s, 〈Φj〉 = vj/
√

2. One real component of

each Φj gets mass of order vj while the other stays massless (it is the Goldstone boson

eaten by the gauge field that becomes massive). We isolate the massless components and

ignore the massive ones by going to a non-linear parametrization, Φj → vj√
2
eiGj/vj , in which

the action depends only on derivatives of Gj . The action for Aj
µ and Gj becomes

S4 →
∫

d4x



− 1

4g2

N
∑

j=0

F j
µνF j

µν +

N
∑

j=1

1

2

[

vj(A
j
µ − Aj−1

µ ) − ∂µGj

]2



 . (3.2)

We now compare this action to that of a latticized 5D warped gauge theory.2 We

divide the fifth dimension into N intervals of size ∆ = Λ−1 (called the lattice spacing) and

thus introduce N + 1 lattice points yj (y0 corresponds to x5 = 0, while yN corresponds to

x5 = L). We thus rewrite the continuum action (2.2) as

S5 →
∫

d4x
∆

g2
5







−1

4

N
∑

j=0

Fµν(yj)Fµν(yj) +
1

2

N
∑

j=1

a2(yj)

(

Aµ(yj)−Aµ(yj−1)

∆
− ∂µA5(yj)

)2






.

(3.3)

It is natural to identify the inverse lattice spacing with the cutoff scale Λ of the continuum

theory. Comparing the 5D latticized action eq. (3.3) with that of deconstruction, eq. (3.2),

we are able to set up the dictionary between 5D warped gauge theories and deconstructed

2We choose an equally-spaced discretization of the coordinate x5. It is possible to choose a different

latticization, for instance by uniformly discretizing in the conformal coordinates. This would match a

different, non-equivalent deconstruction model with the same low-energy limit.
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models:

yjΛ ↔ j ,

Aµ(yj) ↔ Aj
µ ,

a(yj)A5(yj) ↔ gGj ,

a(yj)Λ ↔ gvj ,

g5Λ
1/2 ↔ g . (3.4)

Of course this dictionary is ambiguous at higher orders in the lattice spacing ∆, as the

latticization procedure is not uniquely defined (for example, discretizing ∂5 is ambiguous).

Specializing to the AdS5 background we choose the link vev’s as

vj = vqj , (3.5)

with q ≤ 1 for definiteness.3 This leads to the following AdS5-deconstruction dictionary

k

Λ
↔ log q−1 ,

a(yj) ↔ qj ⇒ aL ↔ qN ,

Λ ↔ gv ,

g2
5 ↔ g/v . (3.6)

The UV brane corresponds to the site j = 0, and the IR one to j = N . UV and IR brane

matter fields can be represented in deconstruction as matter fields transforming under the

0-th or N -th group, respectively.

One often considers a formal limit of sending the lattice spacing to zero, that is Λ → ∞.

This is called the continuum limit. In deconstruction, this limit corresponds to q → 1,

N → ∞, v → ∞ with qN and gv log q−1 kept fixed. Strictly speaking, perturbative

deconstruction can never reach the continuum limit, which is just a rephrasing of the

triviality problem of 5D gauge theories. Indeed, from the last relation in eq. (3.6) this

would require either g → ∞ or g5 → 0. For this reason we will refer to the continuum limit

in the following sense: on the 5D side, the continuum theory means the 5D theory with

large enough Λ to neglect cutoff effects, in particular Λ À k, but still Λ . 1/g2
5 . On the

deconstruction side the continuum limit amounts to choosing 1 − q ¿ 1, N(1 − q) > 1.

Previous analytical studies in deconstruction were restricted to the case q ¿ 1, far

away from the continuum limit. As can be seen from eq. (3.6), this corresponds to the 5D

theory with the cutoff smaller than the curvature scale. Such field theory is UV-sensitive as

higher dimensional operators in the 5D action, e.g. R
Λ2 F 2

MN , may be sizable. Thus, although

deconstructed models with q ¿ 1 are perfectly well-defined and interesting in their own

right, their relation with 5D physics is obscure. In this paper we extend analytical studies

to arbitrary q, including q ∼ 1. We will thus be able to approach deconstruction of 5D

theories with k ¿ Λ, which are well under control on the 5D side.

3See ref. [13] for a discussion of the circumstances under which such a pattern can arise dynamically.
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3.1 Kaluza-Klein approach

We now turn to computing the spectrum of the theory. The gauge boson mass terms are

the following

Lmass =

N
∑

j=1

1

2
v2q2j(Aj

µ − Aj−1
µ )2 . (3.7)

We perform the rotation Aj
µ = fj,nAn

µ, which brings the mass terms to the diagonal form

Lmass =
∑N

n=0
1
2m2

n(An
µ)2. The coefficients fj,n should be viewed as a discretized KK profile

fn(yj). They satisfy the following difference equations (we define xn = mn/gv)

(q + q−1 − q−1(xnq−j)2)fj,n − qfj+1,n − q−1fj−1,n = 0 (3.8)

subject to the boundary conditions

f0,n = f−1,n , fN,n = fN+1,n . (3.9)

The normalization condition reads g−2
∑N

j=0 f2
j,n = 1. Using the dictionary, we can show

that the difference equation (3.8) translates to the continuum equation for the KK profile,

cf. eq. (2.6). The boundary conditions are obviously the discretized version of the Neumann

boundary conditions, cf. eq. (2.7).

It is easy to find the zero-mode solution to eqs. (3.8) and (3.9):

xn = 0 fj,0 =
g√

N + 1
. (3.10)

The wave function of the massive modes can also be found analytically. We first define the

variable t[j] = xnq−j and the function F (t[j]) = qjfj,n. In terms of these variables eq. (3.8)

becomes a q-difference equation

(q + q−1 − q−1t2)F (t) − F (tq−1) − F (tq) = 0 . (3.11)

This equation has been extensively studied in the mathematical literature [20 – 24] and its

solutions are called q-Bessel functions. Since, perhaps, readers are not so well acquainted

with these functions, we summarize all their relevant properties in B. The q-Bessel function

Jν(t; q2) is defined by the series (B.2). The other independent solution Yν(t; q
2) is called

the q-Neumann function and is defined in eq. (B.5). The q-Bessel functions generalize the

ordinary (henceforth referred to as continuum) Bessel functions and enjoy similar properties

(such as integral representations, recurrence relations). In fact, for q → 1 they are simply

related to the continuum ones, see eq. (B.8).

Equation (3.11) is a special case of the Hahn-Exton equation (B.1) with ν = 1 and the

solution is F (t) = AJ1(t; q
2) + BY1(t; q

2). Therefore the deconstructed KK profile can be

written as4

fj,n = Anq−j
[

Y0(xn; q2)J1(xnq−j; q2) − J0(xn; q2)Y1(xnq−j; q2)
]

. (3.12)

4We could exactly calculate the normalization of the KK profiles using results about q-integrals [22],

but here we simply note that the correct normalizations are automatically included in the propagators in

the next subsection, and can be obtained from them.
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The ratio of the two integration constants has been chosen such that the first of the

boundary conditions in eq. (3.9) is satisfied (the recursion relation (B.11) is useful to prove

this). The other boundary condition determines the KK mass spectrum. We find the

spectrum is given by solutions of the equation

J0(xn; q2)Y0(q
−N−1xn; q2) − Y0(xn; q2)J0(q

−N−1xn; q2) = 0 . (3.13)

Note the tantalizing formal similarity of eqs. (3.12), (3.13) to the continuum KK pro-

files (2.8) and the quantization condition (2.10). In the next section we will specify the

parameter range in which the continuum and deconstructed physics indeed match.

3.2 Position-space approach

Much as the continuum theory, deconstruction admits a position-space picture. The decon-

structed position propagator for the gauge field will be denoted by P jk
µν (p2). The indices

j, k are obvious analogues of the position variables x5, y5 in the continuum propagator.

Choosing the gauge-fixing term as

L = − 1

2g2ξ

N
∑

j=0

(

∂µAj
µ + ξg2v(qjGj − qj+1Gj+1)

)2
(3.14)

removes the mixing between Gj and Aj
µ (in the above G0 ≡ 0 ≡ GN is understood). In

this gauge the propagator satisfies Djm
µρ Pmk

ρν = iδjkηµν , where Djk
µν is the kinetic operator

(Fourier-transformed to 4D momentum space):

g2Djk
µν =

(

−p2ηµν + (1 − 1/ξ)pµpν

)

δjk + g2v2q2j
(

δjk + q2δjk − δj,k+1 − q2δj,k−1

)

ηµν .

(3.15)

The propagator is of the form P jk
µν (p2) = (ηµν − pµpν

p2 )Pj,k(p
2) +

pµpν

p2 Pj,k(p
2/ξ), where

Pjk(p
2) satisfies

(

−p2 + g2v2q2j(1 + q2)
)

Pj,k − g2v2q2j(Pj−1,k + q2Pj+1,k) = ig2δj,k , (3.16)

together with the boundary conditions

P0,k = P−1,k , PN,k = PN+1,k . (3.17)

These boundary conditions, technically speaking, are chosen such that eq. (3.16) is correct

for j = 0 and j = N . They are analogues of the Neumann boundary conditions for the

continuum propagator. See A for the deconstruction of general boundary conditions.

For j 6= k, the propagator equation (3.16) is the same as the KK mode equation (3.8)

with xn → x ≡ p/gv. Therefore we can easily write down the solutions for j < k and j > k

that satisfy the relevant boundary condition:

P<
j,k = A<

k q−j
[

Y0(x; q2)J1(q
−jx; q2) − J0(x; q2)Y1(q

−jx; q2)
]

P>
j,k = A>

k q−j
[

Y0(q
−N−1x; q2)J1(q

−jx; q2) − J0(q
−N−1x; q2)Y1(q

−jx; q2)
]

. (3.18)
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The constants A<,>
k are determined by the matching conditions

P<
k,k = P>

k,k , P<
k+1,k = P>

k+1,k +
i

v2q2k+2
, (3.19)

which make the solution (3.18) satisfy the propagator equation for j = k and j = k + 1.

After some algebra we solve for A<,>
k and derive the deconstructed position propagator:

Pjk(p
2) =

iπ

v2(1 − q2)
q−k−j

[

Y0(x; q2)J1(q
−jx; q2) − J0(x; q2)Y1(q

−jx; q2)
]

[

Y0(q
−N−1x; q2)J1(q

−kx; q2) − J0(q
−N−1x; q2)Y1(q

−kx; q2)
]

Y0(x; q2)J0(q−N−1x; q2) − J0(x; q2)Y0(q−N−1x; q2)
,

(3.20)

for j ≤ k. The denominator reproduces the poles at p2 equal to the KK masses m2
n given

by eq. (3.13).

We can also define “brane-to-brane” propagators

P00(p
2) =

ig

vp

Y0(q
−N−1x; q2)J1(x; q2) − J0(q

−N−1x; q2)Y1(x; q2)

Y0(x; q2)J0(q−N−1x; q2) − J0(x; q2)Y0(q−N−1x; q2)
,

PNN (p2) =
ig

qNvp

Y0(x; q2)J1(q
−Nx; q2) − J0(x; q2)Y1(q

−Nx; q2)

Y0(x; q2)J0(q−N−1x; q2) − J0(x; q2)Y0(q−N−1x; q2)
,

P0N (p2) =
ig2(1 − q2)

πp2

1

Y0(x; q2)J0(q−N−1x; q2) − J0(x; q2)Y0(q−N−1x; q2)
. (3.21)

We will also need the UV propagator evaluated at Euclidean momenta p2 = −p2
E. It is

convenient to rewrite it in terms of the modified q-Bessel functions Iν(x; q2) and Kν(x; q2)

defined in eqs. (B.17) and (B.18):

P00(−p2
E) =

ig

vpE

K0(q
−N−1xE ; q2)I1(xE ; q2) + I0(q

−N−1xE ; q2)K1(xE ; q2)

K0(xE ; q2)I0(q−N−1xE; q2) − I0(xE ; q2)K0(q−N−1xE; q2)
, (3.22)

where xE = pE/gv.

The connection between the KK and position pictures in deconstruction is provided

by the spectral formula

Pjk(p
2) = −i

N
∑

n=0

fj,nfk,n

p2 − m2
n

, (3.23)

which involves a finite sum. This implies that the propagator (3.20) is, in fact, given by a

ratio of two polynomials in p2.

3.3 Holographic approach

Finally, it is possible to implement the holographic approach in deconstruction. In fact, at

the conceptual level, constructing the boundary effective action is even clearer here. The

procedure in deconstruction amounts to integrating out N gauge bosons Aj
µ with j ≥ 1

and leaving A0
µ as the low energy variable.5 We obtain, for ξ = 1,

Seff = −1

2

∫

d4p

(2π)4
A0

µ(p)ΠµνA0
ν(p) , Πµν = − i

P00(p2)
ηµν . (3.24)

5Note that neither A0
µ nor the remaining gauge bosons are mass eigenstates. However, integrating out

linear combinations of light and massive fields is equivalent to integrating out heavy mass eigenstates after

appropriate redefinitions of the light fields in the low-energy theory [18].
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4. Discussion

In this section we give a detailed discussion of the spectrum, the KK profiles and the

propagators derived in section 3. We first consider the case q ∼ 1 and determine the

energy range in which deconstruction is a good approximation of the continuum 5D gauge

theory. Then, we extend our discussion to general q, including the case q ¿ 1, which does

not have a 5D interpretation. Finally, we comment on the holographic interpretation of

the deconstructed setup, for both the continuum case q ∼ 1 and for smaller values of q.

Let q ∼ 1, but still qN ≈ qN+1 ¿ 1. In this case it is convenient to rewrite q = 1 − δ

with δ (but not Nδ) being a small parameter. From eq. (3.6) δ is interpreted as the ratio

k/Λ, that is k ↔ δgv up to corrections of higher order in δ. From this it follows that

the smallness of δ is a necessary condition for the corresponding 5D theory to be in a

controllable regime.

We first discuss the KK spectrum of deconstruction for δ ¿ 1. For small enough δ,

according to eq. (B.8), q-Bessel functions can be approximated by the continuum ones, as

long as their argument is less than 1. Thus, for mn . qNgv, the eigenvalue equation (3.13)

can be approximated as

J0

(

mn

δgv

)

Y0

(

mn

δgvqN

)

− Y0

(

mn

δgv

)

J0

(

mn

δgvqN

)

≈ 0 . (4.1)

The spectrum obtained by solving eq. (4.1) matches the continuum spectrum with k = δgv

and aL = qN , as prescribed by the dictionary (3.6). In particular, it is linearly spaced:

mn ≈ πδgvqN (n − 1/4) , mn . qNgv . (4.2)

One can also easily see that the deconstructed position propagators match the continuum

ones (more precisely, P (p2, yj, yk) ≈ Pjk(p
2) after relating the parameters as in eq. (3.6))

for momenta smaller than qNgv. This ensures that both theories describe the same physics

below the scale qN+1gv at leading order in δ and p/gv.

For mn > qNgv, some of the q-Bessel functions describing the KK profile and the

mass spectrum fall outside the range of continuum approximation. In particular, the

functions Y0(mn/qN+1gv; q2) and J0(mn/qN+1gv; q2) in the quantization condition (3.13)

can no longer be approximated by continuum Bessel functions. According to eq. (B.34)

these functions oscillate rapidly with exponentially decaying/growing amplitudes. On the

other hand, for mn ¿ δgv, we find |Y0(mn/gv; q2)| À |J0(mn/gv; q2)|. We can thus infer

that the solutions to eq. (3.13) for qNgv . mn . δgv are approximately given by the

asymptotic zeros of J0(mn/qN+1gv; q2). Using, eq. (B.35) we find an exponential spectrum,

mn ≈ gvqN+1q−n, in this regime. This formula can be refined using the detailed asymptotic

behaviour of the q-Bessel functions at small and large argument, given by eqs. (B.26), (B.34)

and (B.37). We obtain6

mn ≈ gvqN+1q−n+αn , qN+1gv . mn . δgv , (4.3)

6Note that for weak warping, qN+1 . δ, there is no regime where this approximation is valid.
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Figure 1: Numerical comparison of the deconstructed KK spectrum (red circles) and the continuum

one (black line). The deconstructed spectrum is calculated for N = 75 and q = 0.97, which

corresponds to the warp factor aL ≈ 0.102 on the continuum side. KK masses are given in units

of k.

where

qαn =



1 − 1

N + 2 − n +
γq2−log(1−q2)

log q





− 1
2

. (4.4)

The q-Euler–Mascheroni constant γq2 is defined in (B.27). The upper limit in the region of

validity of (4.3) arises from the use of the leading terms in the expansions of the q-Bessel

functions at small argument. Moreover, in order to be able to use (B.37), we have made

the ansatz |αn| ¿ 1, which is indeed satisfied by (4.4) when mn . δgv.

Closer to the top of the KK tower, for δgv . mn . 2gv, we have not found an

accurate analytical formula for the spectrum. But from the asymptotic form of the q-Bessel

functions and the trend for the masses below δgv, it can be argued that a growth stronger

than exponential will persist until the scale ∼ 2gv. This agrees with an extrapolation

from the known results at small q and with the exact formula for the product of non-

vanishing eigenmasses in Ref. [12]. The numerical computations confirm this behaviour.

For mn > 2gv, there is no solution to the quantization condition: the deconstructed KK

tower is cut off.

A similar analysis can be applied to study the KK profiles. As we have already men-

tioned, for KK modes with masses below gvqN they match the continuum ones. Above

this scale, the deconstructed KK profiles are still described by continuum Bessel functions

for j < j∗, where qj∗ = mn/gv. However, since the mass of the deconstructed n-th mode

is different from the continuum one, the deconstructed profile is different as well. The

– 16 –



J
H
E
P
0
8
(
2
0
0
6
)
0
6
1

1 2 3 4
x5

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
wf

Figure 2: Deconstructed (red continuous line) and continuum (blue dashed line) KK profiles of

the mode n = 55, for N = 100 and q = 0.955, which corresponds to the warp factor aL ≈ 0.010.

normalization factor is different too, because of the behaviour at large j. For j > j∗,

the quantization condition (3.13) and the asymptotic behaviour of the q-Bessel functions

given by eqs. (B.32), (B.34) and (B.37) imply that the deconstructed KK profiles are ex-

ponentially damped, in contrast with the continuum ones, which oscillate with increasing

amplitude. Hence, above gvqN , deconstructed KK modes are decoupled from the IR brane,

while they are more strongly coupled than the continuum ones to the UV brane, because

of a larger normalization factor. We plot in figure 2 a typical deconstructed KK profile in

the regime mn À gvqN , together with its continuum counterpart.

The preceding discussion identified the deviation scale

ΛD = g v qN , (4.5)

above which the deconstructed KK spectrum and profiles no longer match those of the

continuum theory. Using the dictionary (3.6) the deviation scale is translated to ΛaL =

Λ(L), which is the cutoff scale on the IR brane. Note that for q ∼ 1 this scale is much

larger than the KK scale MKK ∼ δgvqN and there are ∼ 1/δ KK excitations that are

properly matched.

However the applicability range of the continuum theory is far larger, as long as we

keep to the appropriate observables. For example, as we discussed above, 5D UV brane

physics remains perturbative up to a much higher scale, of order ΛS(0) = 1/g2
5 . Naively, it

would seem that deconstruction cannot reproduce continuum UV brane physics above the

scale ΛD. We will show however that it does.

Consider the deconstructed UV propagator at Euclidean momenta, eq. (3.22). Ac-

cording to (B.36) and (B.45), the modified q-Bessel functions eq. (3.22) share the property
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Figure 3: Deconstructed (red continuous line) and continuum (black dashed line) Euclidean brane-

to-brane propagators at the UV (left) and IR (right) branes, for N = 70 and q = 0.95, and thus

aL ≈ 0.0276. Momenta are given in units of k.

with their continuum analogues that at large argument |Kν(x; q2)| ¿ |Iν(x; q2)|, including

the x À 1 region where they deviate from the continuum K and I functions. Thus, for

pE & δgvqN we can approximate

P00(−p2
E) ≈ ig

vpE

K1(
pE
gv ; q2)

K0(
pE
gv ; q2)

≈ ig

vpE

K1(
pE
δgv )

K0(
pE
δgv )

. (4.6)

The last equality involving only continuum Bessel functions holds for pE . gv. We can see

that P00 correctly reproduces the continuum UV propagator (with k = δgv, g2
5 = g/v) at

energies below gv, cf. (2.20) and (2.21). This ensures that the two frameworks describe the

same UV brane physics (for example, scattering amplitudes of UV brane localized matter

fields) below gv. The limiting scale is translated to Λ = Λ(0) — the cutoff scale on the UV

brane.

On the other hand, on the IR brane the matching is terminated at a lower scale. For

pE & gvqN the deconstructed propagator is purely four-dimensional, PNN (−p2
E) ≈ ig2/p2

E ,

and deviates from the 1/pE behaviour of the continuum IR propagator. Thus IR physics

is matched by deconstruction only below the scale gvqN , which is translated to the cutoff

scale on the IR brane Λ(L). We compare the continuum and deconstructed UV and IR

propagators in figure 3.

This discussion can be easily generalized to show that, for an arbitrary position y in

the bulk, deconstruction reproduces continuum physics up to Λ(y) = Λa(y). Therefore,

the deconstruction framework we consider is indeed a realization of a position-dependent

cutoff.

Let us pause for a moment to summarize what we have shown so far. Our results imply

that deconstruction provides a correct approximation of the continuum physics at the UV

and IR branes, and at any position in the bulk. The matching holds all the way up to

the respective position-dependent cutoff scale. In particular, for Λ ∼ 1/g2
5 deconstruction

works well all the way up to the position-dependent strong-coupling scale, that is in the
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entire perturbativity range of the continuum theory.7 The correspondence extends to the

energy range where the KK spectra and profiles in the two theories are completely different.

We were able to establish the agreement of the deconstructed and continuum theories

in the position approach. However, it all seems miraculous from the point of view of the

KK approach. As we have discussed before, the deconstructed KK masses and profiles

deviate from the continuum one at the scale ΛD. Thus, in the two frameworks scattering

amplitudes above ΛD involve an exchange of a different number of KK modes with different

masses and couplings to the brane fields. Somehow, for UV brane amplitudes the two effects

cancel and both frameworks predict the same result. The reason for the better agreement

of the UV propagators is the locality of the action (3.2) in the extra-dimensional lattice:

the Euclidean UV propagator is screened from the IR brane. On the other hand, the KK

masses are determined by global properties of the theory and are thus sensitive to the

physics at the IR brane.

Of course, strictly speaking, the matching of the propagators holds only for t-channel

amplitudes, when the propagators carry space-like momenta. An s-channel experiment on

the UV brane with enough precision could resolve individual KK resonances, which do not

fit in the two theories, and distinguish our completion from a strongly-coupled continuum

theory. In this case, above ΛD, the matching holds only when the energy spread of the

scattered beams is sufficiently larger than the KK spacing, so that individual resonances

cannot be resolved.

We now move to discussing the situation when the parameter q is not close to 1,

that is when deconstruction is away from the continuum limit. In this case there is no

energy regime where the deconstructed spectrum mimics the continuum one. However,

earlier works that concentrated on q ¿ 1 showed that also in this regime deconstruction

reproduces certain features of the continuum theory, for example logarithmic running of

gauge couplings. We are now in a position to make the relation more precise and interpolate

between the different values of q.

At the level of the spectrum, for general q we can again distinguish three regimes. For

mn . qN+1gv, the spectrum is also linear, but now this regime holds only for a few modes.

For mn & qN+1gv, the KK masses are given with great precision by (4.3), and only the

last few modes with (1 − q)gv . mn . gv deviate; see figure 4. In the limit q ¿ 1 we see

that only the exponential regime survives, in agreement with [10 – 12]. The behaviour of

the KK profiles is qualitatively the same as the one discussed before.

Consider now, once more, the UV propagator (3.22), but now for arbitrary q. At

large argument I still dominates over K, so that at energies above the KK mass gap,

pE & gvqN+1, we can approximate

P00(−p2
E) ≈ ig

vpE

K1(pE/gv; q2)

K0(pE/gv; q2)
. (4.7)

7On the other hand, if we choose Λ sufficiently smaller than 1/g2
5 , the 4D behaviour of the deconstructed

theory sets in early enough to stop the linear growth of tree-level amplitudes and prevent the occurrence

of strong coupling. Therefore, this scenario can provide, in principle, a perturbative completion of the

continuum AdS5 theory that can be valid up to much higher scales.
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Figure 4: Comparison of our approximate analytical spectrum (black empty diamonds) and the

numerical one (red solid circles) for N = 50 and q = 0.832, and thus aL ≈ 10−4, in units k = 1. We

plot only the first 40 modes, which lie in the region of validty of our approximation. The relative

error is below 1% for all but the last few modes.

As long as pE . gv, we can use the small argument asymptotics (B.26) of the modified

q-Bessel functions to obtain

P00(−p2
E) ≈ 1

log
(

gv(1 − q2)e−γq2 /q1/2pE

)

ig2 log q−1

p2
E

. (4.8)

The deconstructed UV propagator exhibits analogous momentum dependence to that of the

continuum UV propagator below the curvature scale, cf. eq. (2.20). The factor g2
5k in the

continuum is replaced here by g2 log q−1, in agreement with the dictionary (3.6). Away from

the continuum limit, for q much smaller than 1, only the argument of the “classical log”

does not match the continuum value. Therefore deconstruction with arbitrary q captures

the essentials of the continuum UV brane physics below the scale k. This explains why

deconstruction could reproduce certain features of the 5D theory, such as the logarithmic

running of gauge couplings [25], also in the parameter space away from the continuum

limit.

This brings us to a comment on the relation of deconstruction and holographic CFTs.

We have argued that the UV boundary physics is reproduced in deconstruction for arbitrary

q, below the scale gv where the approximation (4.8) is valid. Therefore it is natural to

conjecture that deconstructed models, also in the parameters range where they do not have

a 5D interpretation, describe the dynamics of some large Nc strongly-coupled theories which

are approximately conformal over a range of scales. This is an interesting generalization of

the AdS/CFT conjecture. In the case at hand 4D strongly-coupled theories might be dual

to weakly-coupled 4D theories with extended gauge symmetry. Matching the propagator
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(4.8) onto the quark bubble calculation in QCD at large Euclidean momentum, the number

of colours in the CFT can be related to the parameters of deconstruction:

Nc =
12π2

g2 log q−1
. (4.9)

According to the dictionary (3.6) we have g2
5k ←→ g2 log q−1, so this a translation of the

well-known AdS/CFT relation Nc = 12π2/g2
5k.

5. Summary and outlook

In this paper we clarified in what sense and in which parameters range deconstruction

approximates 5D gauge theories in the Randall-Sundrum background. In our analysis

of the deconstructed theory, we employed powerful tools of the mathematical theory of

q-Bessel functions. This allowed us to study analytically the parameter space that was

previously accessible only to numerical methods, including the q ∼ 1 region where the

corresponding 5D theory is under control.

The main result of this paper is an explicit proof that the 5D warped gauge theory

can be approximated by deconstruction in all its perturbativity range. More precisely,

deconstruction provides a faithful description all the way up to the position-dependent

cutoff Λ(x5) = a(x5)Λ, where Λ is the inverse lattice spacing. In particular, the continuum

theory with Λ ∼ 1/g2
5 can be reproduced by deconstructed models with perturbative gauge

coupling, g ∼ 1, in which case the matching extends all the way up to the position-dependent

strong-coupling scale ΛS(x5) = a(x5)/g
2
5 . This is not a trivial result, as the KK spectra of

the two theories deviate at a much lower scale, ΛD = aLΛ.

The technical results we derived can be readily applied to more phenomenological

studies. In fact, we have shown that computations in deconstructed warped theories can

be performed at the quantitative level comparable to that in 5D. This is an encouragement

to study deconstructed versions of phenomenological models in AdS5, such as the models

of the electroweak sector of refs. [2]. Deconstruction could provide for a UV completion of

these models that could remain perturbative to much higher energy scales. Furthermore,

deconstruction offers a playground to study the evolution of gauge couplings in AdS5 [25,

17]. This was already exploited in [10, 11], but only in the region q ¿ 1, where the link

with the 5D computation is obscure. The virtue of deconstruction in this case it that it

provides a concrete physical realization of the 5D cutoff physics, which allows, in particular,

to study threshold effects.

It would also be interesting to exploit the relation of deconstruction with holographic

CFTs. Most interestingly, deconstruction can describe certain aspects of the real-world

QCD in the strongly coupled regime. For example, chiral symmetry breaking and physics

of ρ and a resonances can be captured, as shown in ref. [26]. More recently, effective

description of low energy QCD was pursued in 5D continuum models [7]. Our results allow

for quantitative studies of deconstructed versions of these models. This could shed further

light on the origin of this AdS/QCD correspondence and its connection to the Migdal’s

approach [27] discussed recently in [28]. Indeed, the high energy behaviour of the continuum
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correlation functions, which is non-analytic in p2, is approximated in deconstruction by a

ratio of polynomials, similarly as in the Migdal’s approach.

Finally, we note that the methods used here can be directly applied to fields with

different spins, at least in the massless case. For instance, the difference equation for the

graviton corresponds to the Hahn-Exton equation (B.1) with ν = 2. Therefore, all the

results presented here for gauge bosons translate in a straightforward way to the gravity

case. In particular, the qualitative features of the spectrum are the same, and agree with

the discussion presented in ref. [15]. It is also likely that the methods of q-difference

equations can be applied to study deconstruction of more general backgrounds than the

Randall-Sundrum AdS5 one.
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A. Implementation of general boundary conditions

We generalize our results to gauge theories with Dirichlet boundary conditions on one or

on both branes.

The mixed momentum-position space propagator for a gauge boson in a slice of AdS5

can be succinctly written as

Pαβ(p2, x5, y5) = (A.1)

=
iπg2

5

2ka(x5)a(y5)

(

Aα[0]J1(
p

ka(x5)) − Bα[0]Y1(
p

ka(x5))
)(

Aβ [L]J1(
p

ka(y5)) − Bβ[L]Y1(
p

ka(y5))
)

Aα[0]Bβ[L] − Bα[0]Aβ [L]
,

where the parameters Aα[0], Bα[0], Aβ[L], Bβ[L] depend on the boundary conditions. They

take the values

AN [x5] = Y0

(

p

ka(x5)

)

, BN [x5] = J0

(

p

ka(x5)

)

(A.2)

if Neumann boundary conditions are imposed at x5, and

AD[x5] = Y1

(

p

ka(x5)

)

, BD[x5] = J1

(

p

ka(x5)

)

(A.3)

for Dirichlet boundary conditions at x5. We can also define brane-to-brane propagators,

as long as we deal with Neumann boundary conditions on the given brane. For example,

– 22 –



J
H
E
P
0
8
(
2
0
0
6
)
0
6
1

for the Neumann-Dirichlet case we obtain the UV brane-to-brane propagator

PND
UV (p2) = PND(p2, 0, 0) =

ig2
5

p

Y1(
p

kaL
)J1(

p
k ) − J1(

p
kaL

)Y1(
p
k )

Y0(
p
k )J1(

p
kaL

) − J0(
p
k )Y1(

p
kaL

)
, (A.4)

which is suppressed for
√

−p2 ¿ MKK, while for
√

−p2 À MKK it is indistinguishable

from the UV propagator in the Neumann-Neumann case.

We turn to discussing the method of realizing these more general boundary conditions

in deconstruction. To this end we include two more scalar fields: Φ0 charged under A0
µ

with a vev v0/
√

2 and ΦN+1 charged under AN
µ with a vev vN+1/

√
2, so that the boundary

entries in the gauge boson mass matrix are modified. The effect of the additional vev’s is to

modify the “boundary conditions” for the propagator. More precisely, eq. (3.16) represents

the correct propagator equation if we impose

P−1,k =
v2 − v2

0

v2
P0,k ,

PN+1,k =
v2 − q−2(N+1)v2

N+1

v2
PN,k . (A.5)

Setting v0 = vN+1 = 0 we recover the Neumann boundary conditions (3.17). With v0 =

v we get P−1,k = 0 which mimics the Dirichlet boundary conditions on the UV brane.

Similarly vN+1 = qN+1v yields PN+1,k = 0, which is a deconstructed version of the Dirichlet

boundary conditions on the IR brane. Other choices of v0 and vN+1 correspond to mixed

boundary conditions on the continuum side.

We are now in a position to write the general form of the deconstructed position

propagator:

Pαβ
jk (p2) =

iπ

v2(1 − q2)
q−k−j (A.6)

[Aα[0]J1(q
−jx; q2) − Bα[0]Y1(q

−jx; q2)][Aβ [L]J1(q
−kx; q2) − Bβ[L]Y1(q

−kx; q2)]

Aα[0]Bβ [L] − Bα[0]Aβ [L]
.

Neumann (N) or Dirichlet (D) boundary conditions specify the parameters in eq. (A.6) as

follows

AN[0] = Y0(x; q2) BN[0] = J0(x; q2)

AN[L] = Y0(q
−N−1x; q2) BN[L] = J0(q

−N−1x; q2)

AD[0] = Y1(qx; q2) BD[0] = J1(qx; q2)

AD[L] = Y1(q
−N−1x; q2) BD[L] = J1(q

−N−1x; q2) . (A.7)

The correspondence between eqs. (A.1) and (A.6) can be established using the methods

discussed in section 4. In particular, below the deviation scale ΛD = gvqN (translated to

the IR cutoff scale Λ(L) = aLΛ), physical amplitudes in deconstruction mimic those in

the continuum theories at the leading order in δ and p/gv. Above the deviation scale, the

spectra (the poles of the propagator) are different. However t-channel amplitudes on the

UV brane are still reproduced in deconstruction, all the way to the UV cutoff Λ(0) = Λ.
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Therefore for general boundary conditions the correspondence between deconstruction and

continuum holds at the same quantitative level as for the Neumann-Neumann case discussed

in sections 3 and 4.

B. Q-tutorial

This appendix contains definitions of the q-Bessel functions and a review of their vital

properties. Our presentation is based mainly on ref. [21]. We also derive several results

concerning the asymptotic behaviour of the q-Bessel functions, which have not been given

in the literature.

Several inequivalent q-analogues of the Bessel functions have been studied in the math-

ematical literature. The ones relevant to our purpose are solutions of the so-called Hahn-

Exton q-difference equation,

(qν/2 + q−ν/2 − q−ν/2t2)F (t) − F (tq−1/2) − F (tq1/2) = 0 . (B.1)

For definiteness we consider 0 < q < 1. One solution of this equation is the Hahn-Exton

q-Bessel function [20] (q-Bessel in the following) denoted by Jν(t; q). It is defined by the

power series

Jν(t; q) = tν
(qν+1; q)∞

(q; q)∞

∞
∑

k=0

(−1)kqk(k+1)/2

(qν+1; q)k(q; q)k
t2k , (B.2)

where the q-shifted factorials are defined as

(a; q)k =

{

1 if k = 0
∏k−1

n=0(1 − aqn) if k ≥ 1
(B.3)

for a ∈ C and k ∈ Z+ ≡ {0, 1, 2, . . .}, and (a; q)∞ = limk→∞(a; q)k. The q-Bessel Jν(.; q) is

analytic in C\{0}. For ν = n ∈ Z and |t| < 1, it has an integral representation:

Jn(t; q) =
1

2π

∫ 2π

0

(qte−iφ; q)∞
(teiφ; q)∞

e−inφ . (B.4)

It is known that all the zeros of the q-Bessel function of order ν > −1 are real and that

the non-zero ones are simple [22].

For ν /∈ Z Jν(t; q) and J−ν(tqν/2; q) are two independent solutions of eq. (B.1); how-

ever, for integer ν = n, there is the relation J−n(t; q) = (−1)nq
n
2 Jn(tq

n
2 ; q). Therefore

one introduces8 the q-Neumann function Yν(t; q), which is an independent solution for

arbitrary ν:

Yν(t; q) =
Γq(ν)Γq(1 − ν)

π
q−

ν2

2

[

cos(πν)q
ν
2 Jν(t; q) − J−ν(tq

− ν
2 ; q)

]

, (B.5)

where

Γq(ν) =
(q; q)∞
(qν ; q)∞

(1 − q)1−ν (B.6)

8Our definition differs by a factor q−
ν
2

2 from the one in [23]. With our definition, J and Y satisfy the

same recurrence relations.
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is a q-extension of the Euler Γ-function, satisfying limq→1− Γq(ν) = Γ(ν). For integer ν,

the limit ν → n ∈ Z is understood on the r.h.s. of eq. (B.5). Explicitly, this limit gives [23]

Yn(t; q) =
2(q − 1)

π log q
Jn(t; q) log

t

1 − q

− 1 − q

π
t−n

n−1
∑

k=0

(q; q)n−k−1t
2k

(q; q)k

+
1 − q

π log q
tn

∞
∑

k=0

(−1)kq
k(k+1)

2 t2k

(q; q)k(q; q)n+k

{

Γ′
q(n + k + 1)

Γq(n + k + 1)
+

Γ′
q(k + 1)

Γq(k + 1)

}

− 1 − q

2π
tn

∞
∑

k=0

(−1)kqk(k+1)/2t2k(2k + 1)

(q; q)k(q; q)n+k
(B.7)

for n ∈ Z+ (omitting the second term when n = 0). For negative integers Y−n(t; q) =

(−1)nq
n
2 Yn(tq

n
2 ; q).

We now review properties of the q-Bessel and q-Neumann functions. Since the form

relevant to deconstruction is Jν(t; q2) and Yν(t; q
2) (rather than Jν(t; q) and Yν(t; q)), we

find it convenient to present all formulas in this form.

The q-Bessels and q-Neumanns are q-analogues of the ordinary Bessel and Neumann

functions, in the sense that there exists the “continuum limit” q → 1,

lim
q→1−

Zν

(

(1 − q)t; q2
)

= Zν(t) , (B.8)

with Z = J, Y and Jν(.), Yν(.) the ordinary Bessel and Neumann functions. For q close

to 1, the continuum approximation holds for (1 − q)|t| ¿ 1, as can be seen from both the

series and the integral representations. In fact, when q = 1 − δ ∼ 1 and |t| ¿ 1, we can

Taylor expand F (q±1t) in powers of (δt). Keeping terms up to the second derivative, we

obtain

δ2t2F ′′(t) + δ2tF ′(t) + (q−νt2 − qν − q−ν)F (t) = 0 , (B.9)

which is solved by the Bessel or Neumann functions:

F (t) = Z4 sinh2[log qν/2]

(

t

qνδ

)

≈ Zν

(

t

δ

)

. (B.10)

This derivation is valid as long as higher derivatives in the Taylor expansion of F (q±1t) can

be neglected, that is when |δtF ′′′(t)| ¿ |F ′′(t)|. For the solution eq. (B.10) this is indeed

true for |t| ¿ 1.

The q-Bessels and q-Neumann satisfy recursion relations analogous to the ones of their

continuous cousins. In particular, the following ones will prove very useful

qνZν(t; q2) − Zν(qt; q
2) = −qtZν+1(qt; q

2) ,

Zν(t; q
2) − qνZν(qt; q

2) = tZν−1(t; q
2) , (B.11)
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with Z = J, Y . These are actually discrete versions of difference-recurrence relations.

Indeed, one can define the q-derivative of a function as

Dqf(t) =

{

f(t)−f(tq)
t(1−q) if t 6= 0

f ′(0) if t = 0
, (B.12)

which is a q-analogue of the continuum derivative: limq→1− Dqf(t) = f ′(t). Then, (B.11)

are a particular case (k = 1) of [21]:

[

t−1Dq

]k [

t−νZν(t; q
2)

]

=
(−1)kt−ν−kqk(1−ν)

(1 − q)k
Zν+k(tq

k; q2)

[

t−1Dq

]k [

tνZν(t; q2)
]

=
tν−k

(1 − q)k
Zν−k(t; q

2) . (B.13)

For q → 1 this reduces to the familiar recursion relations of the continuum Bessel functions.

The Wronskian of a differential equation has also its q-analogue. In general for a q-

difference equation of the form F (qt) + F (q−1t) + P (t, q)F (t) = 0, its two independent

F1(t) and F2(t) solutions satisfy the relation F1(qt)F2(t) − F1(t)F2(qt) = C(q) with the

r.h.s. independent of t. For q-Bessels, the q-Wronskian relation is

Jν(qt; q2)Yν(t; q2) − Yν(qt; q
2)Jν(t; q

2) =
q−ν(1 − q2)

π
, (B.14)

which can be proved using the series expansion of the q-Bessels. The fact that the q-

Wronskian does not vanish at any point t implies that a general solution of the q-difference

equation (B.1) can be written as [23]

F (t) = A(t)Jν(t; q2) + B(t)Yν(t; q
2) , (B.15)

where A(t) and B(t) are q-periodic, i.e. they satisfy A(qt) = A(t), B(qt) = B(t). But since

we are interested only in discrete values of the argument, t0, qt0, q
2t0, . . ., we can simply

treat A and B as constants.

We can also define q-analogues of the modified Bessel and Bessel-Macdonald functions,

which are solutions of the Euclidean version of the q-difference equation (B.1),

(qν/2 + q−ν/2 + q−ν/2t2)F (t) − F (tq−1/2) − F (tq1/2) = 0 . (B.16)

We define the q-modified-Bessel as9

Iν(t; q) = i−νJν(it; q) , (B.17)

and the q-Bessel–Macdonald as

Kν(t; q) =
1

2
q−

ν2

2 Γq(ν)Γq(1 − ν)
[

I−ν(q
− ν

2 t; q) − q
ν
2 Iν(t; q)

]

, (B.18)

9Here and in the following i represents eπi/2 when −π < arg t ≤ π/2.
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with a limit understood for integer ν. Our definitions agree with the ones in [24], up to a

change of variables. Equivalently, we can write

Kν(t; q) =
π

2
iν+1

[

Γq(ν)Γq(1 − ν)

π
sin νπq

1
2
ν(1−ν)Jν(it; q) + iYν(it; q)

]

. (B.19)

Taking the limit of integer index, we find

Kn(t; q) =
π

2
in+1

[

(−1)n(1 − q)(q; q)n−1

log q(q1−n; q)n−1
q

1
2
n(1−n)Jn(it; q) + iYn(it; q)

]

, (B.20)

for n ∈ N and

K0(t; q) =
π

2
i

[

(1 − q)

− log q
J0(it; q) + iY0(it; q)

]

. (B.21)

The continuum limit is

lim
q→1−

Xν

(

(1 − q)t; q2
)

= Xν(t) , (B.22)

with X = I,K. The q-modified-Bessels and the q-Bessel–Macdonalds satisfy the recurrence

relations

[

t−1Dq

]k [

t−νXν(t; q2)
]

=
(−1)αkt−ν−kqk(1−ν)

(1 − q)k
Xν+k(tq

k; q2)

[

t−1Dq

]k [

tνXν(t; q2)
]

= (−1)αk tν−k

(1 − q)k
Xν−k(t; q

2) , (B.23)

with α = 0, 1 for X = I,K, respectively. The q-Wronskian is

Iν(qt; q
2)Kν(t; q2) − Kν(qt; q

2)Iν(t; q
2) = −q−ν(1 − q2)

2
, (B.24)

and a general solution of (B.16) can be written as

F (t) = A(t)Iν(t; q2) + B(t)Kν(t; q2) , (B.25)

with A,B q-periodic functions, which again we can consider constant.

The behaviour of all these functions at small values of the argument can be read from

the corresponding series expansions. We list below the small argument asymptotics that

are useful for our computations

J0(t; q
2) ≈ I0(t; q

2) ≈ 1 ,

J1(t; q
2) ≈ I1(t; q

2) ≈ t

1 − q2
,

Y0(t; q
2) ≈ 1 − q2

−π log q

(

log
q

1
2 t

1 − q2
+ γq2

)

,

Y1(t; q
2) ≈ −1 − q2

π
t−1 ,

K0(t; q
2) ≈ 1 − q2

2 log q

(

log
q

1
2 t

1 − q2
+ γq2

)

,

K1(t; q
2) ≈ 1 − q2

2
t−1 , (B.26)
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for |t| ¿ 1. We have defined the q-Euler–Mascheroni constant γq = −Γ′
q(1). Its series

representation is

γq2 = log(1 − q2) − log q2
∞

∑

k=1

q2k

1 − q2k
. (B.27)

Varying q from 0 to 1, γq2 grows approximately linearly from 0 to γ = 0.577 . . ..

Obtaining the asymptotic behaviour at large argument is more involved. We first look

at the asymptotic form of the Hahn-Exton equation (B.1). Writing F (t) = Π(t)G(t), where

Π(t) =

∞
∏

k=1

(1 − q2kt2) ≡ (q2t2; q2)∞ (B.28)

and using Π(qt) = Π(t)/(1 − q2t2), Π(q−1t) = Π(t)(1 − t2) the Hahn-Exton equation takes

the form

G(qt) + (1 − t2)(1 − q2t2)G(q−1t) + (1 − q2t2)(t2q−ν − qν − q−ν)G(t) = 0 , (B.29)

which for |t| À 1 reduces to

G(qt) + q2t4G(q−1t) − q2t4q−νG(t) = 0 . (B.30)

One solution follows from neglecting the first term: G(t) = const tν . From eq. (B.30) we

see that this approximation should work fine very quickly when |t| becomes larger than 1.

To find the second solution it is more convenient to insert F (t) = (1/Π(t))G(t) in eq. (B.1),

which leads to the equation

G(qt)(1 − t2)(1 − q2t2) + G(q−1t) + (1 − t2)(t2q−ν − qν − q−ν)G(t) = 0 , (B.31)

approximated by G(qt) = q−ν−2G(t) = 0 at large |t|. The solution is G(t) = const t−ν−2.

Therefore, a general solution to the Hahn-Exton equation has the asymptotic form

F (t) ≈ Atν(q2t2; q2)∞ + B
t−ν−2

(q2t2; q2)∞
, |t| À 1 . (B.32)

For imaginary t one solution grows rapidly (faster than any power of t) while the other

decays (equally rapidly). For real t the situation is more complicated as the “decaying

part” has poles at tn = q−n. In the following we pinpoint the coefficient A for the q-Bessel

functions defined previously.

We can obtain the asymptotic behaviour of the q-Bessel by approximating (qν+1; q)k ≈
(qν+1; q)∞ in the power series (B.2). This is justified because for |t| À 1 the series is

dominated by terms with large k for which this approximation is fine. Using then the

so-called q-binomial theorem (see for instance the second reference in [20]),

(−t2; q2)∞ =

∞
∑

n=0

qn(n−1)t2n

(q2; q2)n
, (B.33)

we arrive at

Jν(t; q
2) ≈ tν

(q2t2; q2)∞
(q2; q2)∞

, |t| À 1 . (B.34)
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This fixes the normalization of the growing part of the q-Bessel. From this expression we

can directly read the asymptotic zeros of the q-Bessel Jν(t; q
2), which are located at

tr ≈ q−r , r ∈ N , q−r À 1 , (B.35)

independently of the index ν (though, in fact, the approximation (B.34) is better for larger

values of ν). Since the above derivation is valid for any argument of t, we also find

Iν(t; q2) ≈ tν
(−q2t2; q2)∞

(q2; q2)∞
, |t| À 1 . (B.36)

Finding the asymptotic form of the q-Neumann is even more involved. Here we give the

expression for integer index, n ∈ Z+, which follows from (B.7) and (B.34):

Yn(t; q2) ≈(−1)n(1 − q2)(q2; q2)n−1

2 log q(q2; q2)∞

[

qn(1−n) log(qt)tn(q2t2; q2)∞ (B.37)

− (−1)n

(

log

(

q2n

t

)

+ 2 log q

∞
∑

r=1

t2q2(r−n)

1 − q2(r−n)t2

)

t−n(q2−2nt2; q2)∞

]

, |t| À 1 ,

for n ∈ N,

Y0(t; q
2) ≈ (1 − q2)

−π log q(q2; q2)∞

[

log t + log q

(

1

2
−

∞
∑

r=1

t2q2r

1 − q2rt2

)]

(q2t2; q2)∞ , |t| À 1 .

(B.38)

Note that the poles in the sum cancel against zeros in (q2−2nt2; q2)∞. For real t, writing

t = q−s+α, with s ∈ N and α ∈] − 1/2, 1/2], and assuming |α| ¿ 1, we can approximate

the sum at large t by

∞
∑

r=1

t2q2(r−n)

1 − q2(r−n)t2
=

log t

log q
+ 1 − n +

1

q−2α − 1
+ O

(

t−2
)

. (B.39)

Therefore,

Yn(t; q2) ≈ (−1)n(1 − q2)(q2; q2)n−1

2π log q(q2; q2)∞(q2−2n; q2)n−1

[

qn(1−n) log(qt)tn(q2t2; q2)∞

− (−1)n
(

log t + 2

(

1 +
1

q−2α − 1

)

log q

)

t−n(q2−2nt2; q2)∞

]

, |α| ¿ 1, t À 1 ,

(B.40)

for n ∈ N, and

Y0(t; q
2) ≈ (1 − q2)

π(q2; q2)∞

(

1

2
+

1

q−2α − 1

)

(q2t2; q2)∞ , |α| ¿ 1 , t À 1 . (B.41)

The corresponding expressions for imaginary argument t = iτ , τ ∈ R, are simpler. In

this case we can evaluate the relevant sum to leading order at large |τ | without any further

restriction:

−
∞
∑

r=1

τ2q2(r−n)

1 + q2(r−n)τ2
=

log τ2

2 log q
− n +

1

2
+ O

(

τ−2
)

, (B.42)
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which leads to the asymptotics

Yn(it; q2) ≈ i
(−1)n(1 − q2)(q2; q2)n−1q

n(1−n)

2 log q(q2−2n; q2)n−1
(it)n(−q2t2; q2)∞ , t ∈ R , |t| À 1 , (B.43)

for n ∈ N and

Y0(it; q
2) ≈ i

(1 − q2)

−2 log q
(−q2t2; q2)∞ , t ∈ R , |t| À 1 . (B.44)

This allows us to build a linear combination of the q-Bessel and q-Neumann, which is purely

decaying at large imaginary values of the argument. In fact, from the above expression we

see that this combination is proportional to the q-Bessel–Macdonald. In other words,

Kn(t; q) ¿ 1 , t ∈ R , |t| À 1 . (B.45)

Therefore, the q-Bessel–Macdonald shares with its continuum counterpart the property

that, at large real argument t, it is dumped. This is true in the “continuum” region as

well as for t À 1 where the continuum approximation fails. We also see that in this regime

Kn(t; q) ¿ In(t; q). It is plausible that the same behaviour holds for non-integer indices,

though we have not proved this result.
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