38 research outputs found
Adequate immune response ensured by binary IL-2 and graded CD25 expression in a murine transfer model
The IL-2/IL-2Ralpha (CD25) axis is of central importance for the interplay of
effector and regulatory T cells. Nevertheless, the question how different
antigen loads are translated into appropriate IL-2 production to ensure
adequate responses against pathogens remains largely unexplored. Here we find
that at single cell level, IL-2 is binary (digital) and CD25 is graded
expressed whereas at population level both parameters show graded expression
correlating with the antigen amount. Combining in vivo data with a
mathematical model we demonstrate that only this binary IL-2 expression
ensures a wide linear antigen response range for Teff and Treg cells under
real spatiotemporal conditions. Furthermore, at low antigen concentrations
binary IL-2 expression safeguards by its spatial distribution selective STAT5
activation only of closely adjacent Treg cells regardless of their antigen
specificity. These data show that the mode of IL-2 secretion is critical to
tailor the adaptive immune response to the antigen amount
Digital NFATc2 Activation per Cell Transforms Graded T Cell Receptor Activation into an All-or-None IL-2 Expression
The expression of interleukin-2 (IL-2) is a key event in T helper (Th) lymphocyte activation, controlling both, the expansion and differentiation of effector Th cells as well as the activation of regulatory T cells. We demonstrate that the strength of TCR stimulation is translated into the frequency of memory Th cells expressing IL-2 but not into the amount of IL-2 per cell. This molecular switch decision for IL-2 expression per cell is located downstream of the cytosolic Ca2+ level. Here we show that in a single activated Th cell, NFATc2 activation is digital but NF-κB activation is graded after graded T cell receptor (TCR) signaling. Subsequently, NFATc2 translocates into the nucleus in an all-or-none fashion per cell, transforming the strength of TCR-stimulation into the number of nuclei positive for NFATc2 and IL-2 transcription. Thus, the described NFATc2 switch regulates the number of Th cells actively participating in an immune response
NFATc1 controls the cytotoxicity of CD8+ T cells
NFAT nuclear translocation has been shown to be required for CD8+ T cell cytokine production in response to viral infection. Here the authors show NFATc1 controls the cytotoxicity and metabolic switching of activated CD8+ T cells required for optimal response to bacteria and tumor cells
NFATc2 is a switch of t-cell-receptor dependent activation of human CD4+ Th cells
Titelblatt und Inhaltsverzeichnis
Abkürzungsverzeichnis
Einleitung
Material und Methoden
Ergebnisse
Diskussion
Zusammenfassung
Summary
LiteraturverzeichnisDie IL-2 Expression von CD4+ Th-Zellen nach spezifischer TCR Stimulation ist
ein Schlüsselereignis der adaptiven Immunantwort. Eine Fehlregulation des
Zytokins IL-2 hat fundamentale Auswirkungen auf die Homöostase des adaptiven
Immunsystems in vivo. Während die transkriptionelle Regulation des IL-2
Promotors hinreichend erforscht wurde, sind die zellulären
Entscheidungsprozesse der Signaltransduktion, die zur Bildung von IL-2 führen,
kaum bekannt. In dieser Arbeit wurde gezeigt, dass die transkriptionelle
Induktion von IL-2 innerhalb einer peripheren humanen CD4+ Th-Zellpopulation
während der initialen mitogenen Th-Zellaktivierung modulierbar war, und einem
binären und nicht graduellen Entscheidungsprozess unterlag. Die graduelle
Stimulation oder graduelle Inhibierung der TCR-abhängigen Aktivierung von Th-
Zellen resultierte in einer Veränderung der Frequenz der IL-2 produzierenden
Zellen und nicht in einer Veränderung der Intensität der IL-2 Produktion pro
Zelle. Der Entscheidungsprozess dieser binären IL-2 Expression wurde in dieser
Arbeit erstmalig und auf Einzelzellebene untersucht. Hierzu wurden die IL-2
Produzenten und die IL-2 Nichtproduzenten einer humanen CD4+ Th-Zellpopulation
anhand des IL-2 Sekretionsassays separiert. Darüber hinaus wurde eine Methode
zur durchflusszytometrischen Detektion der aktivierten Transkriptionsfaktoren
NFATc2 und NF-kB (p65) in isolierten intakten Zellkernen aus humanen Th-Zellen
etabliert. Mit dieser Arbeit konnte belegt werden, dass NFATc2 als ein
zellulärer Schalter der Ca2+/Calcineurin-abhängigen T-Zellaktivierung
funktioniert. Die IL-2 Produktion zeigte eine große Abhängigkeit von der
intrazellulären exprimierten NFATc2 Menge und resultierte infolge eines
binären Aktivierungs- und nukleären Translokationsprofils von NFATc2 in einem
binären IL-2 Expressionsprofil in individuellen Zellen. Im Gegensatz dazu
wurde für die Aktivierung von NF-kB (p65) eine graduelles nukleäres
Translokationsprofil detektiert. Durch mathematische Modellierung der
vorliegenden Ergebnisse konnte zudem eine binäre Geninduktion als Folge einer
Schalteraktivierung von NFATc2 in Reaktion auf eine graduelle Stimulation mit
Ionomycin simuliert werden, für die bereits die kooperative Dephosphorylierung
von 7 der 13 Serin-Phosphorylierungsstellen am NFATc2 Molekül als ausreichend
für die Induktion einer binären IL-2 Expression ermittelt werden konnte. Damit
kann der hier beschriebene NFATc2 Schalter als ein Übersetzer der Signalstärke
bei der T-Zellaktivierung in die effektive Anzahl an aktivierten,
zytokinproduzierenden Th-Zellen angesehen werden, der als ein allgemeiner
Kontrollpunkt in Th-Zellen die Qualität der adaptiven Immunantwort
mitbestimmt.Expression of IL-2 by activated T helper cells is a key event of the adaptive
immune response after antigenic stimulation. The dysregulation of IL-2 is of
fundamental consequence for the homeostasis of the immune system in vivo.
While the molecular analysis of IL-2 trans-criptional regulation has been
extensively studied the cellular decision processes leading to IL-2 expression
are not known. In this study is shown that in human periphal CD4+ Th cells the
transcriptional response of IL-2 can be modulated after initial mitogenic
stimulation and is followed by a binary and not a graded decision process. The
titration of the Ca2+ ionophore ionomycin or inhibition of mitogenic
stimulation by the classical calcineurin inhibitor cyclosporine A only changed
the frequency of IL-2 producing cells but not the intensity of IL-2 production
per cell. The molecular decision process leading to the binary IL-2 expression
pattern shown here was examined for the first time and on individual cells. On
this account, the IL-2 capture assay was used to separate IL-2 producing and
non-producing cells after stimulation. For single cell analysis, a method for
cytometrical detection of the activated transcription factors NFATc2 and NF-kB
(p65) in isolated nuclei was developed. The results proved NFATc2 as a
cellular switch of Ca2+/calcineurin dependent T cell activa-tion. The IL-2
production showed great dependancy on the intracellular level of expressed
NFATc2 and results in binary IL-2 expression pattern after all-or-non
activation of NFATc2 in individual cells. Graded stimulations by titration
with Ionomycin or CsA lead to an all-or-non NFATc2 but graded NF-kB (p65)
nuclear translocation per cell. Mathematical modeling predicts that co-
operativity of at least 7 of the 13 NFATc2 dephosphorylation sites after
graded stimulation by ionomycin would be sufficient to induce a binary IL-2
expression. By translating the strength of antigenic T cell stimulation into
the frequency of cytokine producing Th cells, the described NFATc2 switch is a
general hub for productive adaptive immune response
Impact of the Covid‑19 pandemic on the performance of machine learning algorithms for predicting perioperative mortality
Background Machine-learning models are susceptible to external influences which can result in performance deterioration.
The aim of our study was to elucidate the impact of a sudden shift in covariates, like the one caused by the
Covid-19 pandemic, on model performance.
Methods After ethical approval and registration in Clinical Trials (NCT04092933, initial release 17/09/2019), we developed
different models for the prediction of perioperative mortality based on preoperative data: one for the pre-pandemic
data period until March 2020, one including data before the pandemic and from the first wave until May 2020,
and one that covers the complete period before and during the pandemic until October 2021. We applied XGBoost
as well as a Deep Learning neural network (DL). Performance metrics of each model during the different pandemic
phases were determined, and XGBoost models were analysed for changes in feature importance.
Results XGBoost and DL provided similar performance on the pre-pandemic data with respect to area under receiver
operating characteristic (AUROC, 0.951 vs. 0.942) and area under precision-recall curve (AUPR, 0.144 vs. 0.187). Validation
in patient cohorts of the different pandemic waves showed high fluctuations in performance from both AUROC
and AUPR for DL, whereas the XGBoost models seemed more stable. Change in variable frequencies with onset of
the pandemic were visible in age, ASA score, and the higher proportion of emergency operations, among others. Age
consistently showed the highest information gain. Models based on pre-pandemic data performed worse during the
first pandemic wave (AUROC 0.914 for XGBoost and DL) whereas models augmented with data from the first wave
lacked performance after the first wave (AUROC 0.907 for XGBoost and 0.747 for DL). The deterioration was also visible
in AUPR, which worsened by over 50% in both XGBoost and DL in the first phase after re-training.
Conclusions A sudden shift in data impacts model performance. Re-training the model with updated data may
cause degradation in predictive accuracy if the changes are only transient. Too early re-training should therefore be
avoided, and close model surveillance is necessary