8 research outputs found

    Changes in the Antioxidant Properties of Quince Fruit (Cydonia oblonga Miller) during Jam Production at Industrial Scale

    Get PDF
    The content of phenolic compounds and their relationship with the antioxidant capacity of quince fruit were evaluated before and after jam processing at industrial scale. Waste samples from industrial processing were also analyzed. Twelve phenolics and one organic acid were identified and quantified by HPLC-DAD-QTOF. According to the results, jam processing did not produce a decrease in polyphenolic content, and, in some cases, the polyphenolic content even increased. Antioxidant capacities determined by DPPH and FRAP assays showed similar results. On the other hand, the waste samples analyzed retained large amounts of polyphenols, even though their antioxidant capacity was lower than that in pulp samples. Boosted Regression Trees analysis showed a good correlation between phenolic profile and antioxidant capacity, with 5-p-coumaroylquinic acid being the most relevant compound to explain the antioxidant capacity by both methods

    How Much Do Soil and Water Contribute to the Composition of Meat? A Case Study: Meat from Three Areas of Argentina

    No full text
    The main goal of this study was to propose a reliable method to verify the geographical origin of meat, establishing the influence of soil and water on its isotopic and elemental composition. Thus, beef meat, soil, and water samples were collected from three major cattle-producing regions of Argentina (Buenos Aires, Córdoba, and Entre Ríos). Multielemental composition was determined on these three matrices by inductively coupled plasma mass spectrometry (ICP-MS), Ύ<sup>13</sup>C and Ύ<sup>15</sup>N by isotope-ratio mass spectrometry (IRMS), and the <sup>87</sup>Sr/<sup>86</sup>Sr ratio by thermal ionization mass spectrometry (TIMS). Soil and drinking water samples could be characterized and clearly differentiated by combining the isotopic ratios and elements, demonstrating differences in geology and climatic conditions of three regions. Similarly, meat originating at each sampling area was characterized and differentiated using only five key variables (Rb, Ca/Sr, Ύ<sup>13</sup>C, Ύ<sup>15</sup>N, and <sup>87</sup>Sr/<sup>86</sup>Sr). Generalized procrustes analysis (GPA), using the three studied matrices (soil, water, and meat) shows consensus between them and clear differences between studied areas. Furthermore, canonical correlation analysis (CCA) demonstrates significant correlation between the chemical-isotopic profile of meat with those corresponding to both soil and water (<i>r</i><sup>2</sup> = 0.93, <i>p</i> < 0.001; and <i>r</i><sup>2</sup> = 0.83, <i>p</i> < 0.001, respectively). So far, there are clear coincidences between the meat fingerprint and those from soil/water where cattle grew, presenting a good method to establish beef provenance. To the authors' knowledge this is the first report linking the influence of soil and water all together on the composition of beef, presenting the basis for the authentication of Argentinean beef, which could be extended to meat from different provenances

    The B-Star Exoplanet Abundance Study: a co-moving 16–25 M Jup companion to the young binary system HIP 79098

    Get PDF
    9 pages, 6 figures, accepted for publication in A&AInternational audienceWide low-mass substellar companions are known to be very rare among low-mass stars, but appear to become increasingly common with increasing stellar mass. However, B-type stars, which are the most massive stars within ~150 pc of the Sun, have not yet been examined to the same extent as AFGKM-type stars in that regard. In order to address this issue, we launched the ongoing B-star Exoplanet Abundance Study (BEAST) to examine the frequency and properties of planets, brown dwarfs, and disks around B-type stars in the Scorpius-Centaurus (Sco-Cen) association; we also analyzed archival data of B-type stars in Sco-Cen. During this process, we identified a candidate substellar companion to the B9-type spectroscopic binary HIP 79098 AB, which we refer to as HIP 79098 (AB)b. The candidate had been previously reported in the literature, but was classified as a background contaminant on the basis of its peculiar colors. Here we demonstrate that the colors of HIP 79098 (AB)b are consistent with several recently discovered young and low-mass brown dwarfs, including other companions to stars in Sco-Cen. Furthermore, we show unambiguous common proper motion over a 15-year baseline, robustly identifying HIP 79098 (AB)b as a bona fide substellar circumbinary companion at a 345+/-6 AU projected separation to the B9-type stellar pair. With a model-dependent mass of 16-25 Mjup yielding a mass ratio of <1%, HIP 79098 (AB)b joins a growing number of substellar companions with planet-like mass ratios around massive stars. Our observations underline the importance of common proper motion analysis in the identification of physical companionship, and imply that additional companions could potentially remain hidden in the archives of purely photometric surveys
    corecore