2,051 research outputs found

    Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy

    Full text link
    In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.Comment: 22 pages, 11 figure

    Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment

    Full text link
    Automated data-driven decision making systems are increasingly being used to assist, or even replace humans in many settings. These systems function by learning from historical decisions, often taken by humans. In order to maximize the utility of these systems (or, classifiers), their training involves minimizing the errors (or, misclassifications) over the given historical data. However, it is quite possible that the optimally trained classifier makes decisions for people belonging to different social groups with different misclassification rates (e.g., misclassification rates for females are higher than for males), thereby placing these groups at an unfair disadvantage. To account for and avoid such unfairness, in this paper, we introduce a new notion of unfairness, disparate mistreatment, which is defined in terms of misclassification rates. We then propose intuitive measures of disparate mistreatment for decision boundary-based classifiers, which can be easily incorporated into their formulation as convex-concave constraints. Experiments on synthetic as well as real world datasets show that our methodology is effective at avoiding disparate mistreatment, often at a small cost in terms of accuracy.Comment: To appear in Proceedings of the 26th International World Wide Web Conference (WWW), 2017. Code available at: https://github.com/mbilalzafar/fair-classificatio

    On Spacetimes with Constant Scalar Invariants

    Full text link
    We study Lorentzian spacetimes for which all scalar invariants constructed from the Riemann tensor and its covariant derivatives are constant (CSICSI spacetimes). We obtain a number of general results in arbitrary dimensions. We study and construct warped product CSICSI spacetimes and higher-dimensional Kundt CSICSI spacetimes. We show how these spacetimes can be constructed from locally homogeneous spaces and VSIVSI spacetimes. The results suggest a number of conjectures. In particular, it is plausible that for CSICSI spacetimes that are not locally homogeneous the Weyl type is IIII, IIIIII, NN or OO, with any boost weight zero components being constant. We then consider the four-dimensional CSICSI spacetimes in more detail. We show that there are severe constraints on these spacetimes, and we argue that it is plausible that they are either locally homogeneous or that the spacetime necessarily belongs to the Kundt class of CSICSI spacetimes, all of which are constructed. The four-dimensional results lend support to the conjectures in higher dimensions.Comment: 25 pages, 1 figure, v2: minor changes throughou

    Multi-Wavelength Monitoring of the Changing-Look AGN NGC 2617 during State Changes

    Get PDF
    Optical and near-infrared photometry, optical spectroscopy, and soft X-ray and UV monitoring of the changing-look active galactic nucleus NGC 2617 show that it continues to have the appearance of a type-1 Seyfert galaxy. An optical light curve for 2010-2017 indicates that the change of type probably occurred between 2010 October and 2012 February and was not related to the brightening in 2013. In 2016 and 2017 NGC 2617 brightened again to a level of activity close to that in 2013 April. However, in 2017 from the end of the March to end of July 2017 it was in very low level and starting to change back to a Seyfert 1.8. We find variations in all passbands and in both the intensities and profiles of the broad Balmer lines. A new displaced emission peak has appeared in Hβ. X-ray variations are well correlated with UV-optical variability and possibly lead by ̃2-3 d. The K band lags the J band by about 21.5 ± 2.5 d and lags the combined B + J bands by ̃25 d. J lags B by about 3 d. This could be because J-band variability arises predominantly from the outer part of the accretion disc, while K-band variability is dominated by thermal re-emission by dust. We propose that spectral-type changes are a result of increasing central luminosity causing sublimation of the innermost dust in the hollow bi-conical outflow. We briefly discuss various other possible reasons that might explain the dramatic changes in NGC 2617.Fil: Oknyansky, V. L.. Sternberg Astronomical Institute; RusiaFil: Gaskell, C. M.. Department of Astronomy and Astrophysics. University of California. Santa Cruz; Estados UnidosFil: Mikailov, K. M.. Shamakhy Astrophysical Observatory, National Academy of Sciences. Pirkuli; AzerbaiyánFil: Lipunov, V. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University ; RusiaFil: Shatsky, N. I.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tsygankov, S. S.. Tuorla Observatory, Department of Physics and Astronomy. University of Turku.; FinlandiaFil: Gorbovskoy, E. S.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tatarnikov, A. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Metlov, V. G.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Malanchev, K. L.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Brotherton, M.B.. University of Wyoming; Estados UnidosFil: Kasper, D.. University of Wyoming; Estados UnidosFil: Du, P.. Institute of High Energy Physics. Chinese Academy of Sciences; ChinaFil: Chen, X.. School of Space Science and Physics. Shandong University; ChinaFil: Burlak, M. A.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Buckley, D. A. H.. The South African Astronomical Observatory; SudáfricaFil: Rebolo, R.. Instituto de Astrofisica de Canarias; EspañaFil: Serra-Ricart, M.. Instituto de Astrofisica de Canarias; EspañaFil: Podestá, R.. Universidad Nacional de San Juan; ArgentinaFil: Levato, O. H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentin

    Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind

    Get PDF
    We measure the power and spectral index anisotropy of high speed solar wind turbulence from scales larger than the outer scale down to the ion gyroscale, thus covering the entire inertial range. We show that the power and spectral indices at the outer scale of turbulence are approximately isotropic. The turbulent cascade causes the power anisotropy at smaller scales manifested by anisotropic scalings of the spectrum: close to k^{-5/3} across and k^{-2} along the local magnetic field, consistent with a critically balanced Alfvenic turbulence. By using data at different radial distances from the Sun, we show that the width of the inertial range does not change with heliocentric distance and explain this by calculating the radial dependence of the ratio of the outer scale to the ion gyroscale. At the smallest scales of the inertial range, close to the ion gyroscale, we find an enhancement of power parallel to the magnetic field direction coincident with a decrease in the perpendicular power. This is most likely related to energy injection by ion kinetic modes such as the firehose instability and also marks the beginning of the dissipation range of solar wind turbulence.Comment: 5 pages, 4 figures, 1 table, submitted to MNRAS letter

    Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence

    Get PDF
    We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 102431024^3 collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number PrM{\rm Pr_M} over a large range, namely, 0.01PrM100.01 \leq {\rm Pr_M} \leq 10. We obtain data for a wide variety of statistical measures such as probability distribution functions (PDFs) of moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterise intermittency, isosurfaces of quantities such as the moduli of the vorticity and current, and joint PDFs such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from larger intermittency in the magnetic field than in the velocity field, at large PrM{\rm Pr_M}, to smaller intermittency in the magnetic field than in the velocity field, at low PrM{\rm Pr_M}. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of PrM{\rm Pr_M}, multiscaling exponent ratios agree, at least within our errorbars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.Comment: 49 pages,33 figure

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc

    Kinetic Turbulence

    Full text link
    The weak collisionality typical of turbulence in many diffuse astrophysical plasmas invalidates an MHD description of the turbulent dynamics, motivating the development of a more comprehensive theory of kinetic turbulence. In particular, a kinetic approach is essential for the investigation of the physical mechanisms responsible for the dissipation of astrophysical turbulence and the resulting heating of the plasma. This chapter reviews the limitations of MHD turbulence theory and explains how kinetic considerations may be incorporated to obtain a kinetic theory for astrophysical plasma turbulence. Key questions about the nature of kinetic turbulence that drive current research efforts are identified. A comprehensive model of the kinetic turbulent cascade is presented, with a detailed discussion of each component of the model and a review of supporting and conflicting theoretical, numerical, and observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al. (eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library 407, Springer-Verlag Berlin Heidelberg (2015
    corecore