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Abstract. We present the results of our detailed pseudospectral direct
numerical simulation (DNS) studies, with up to 10243 collocation points, of
incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions,
without a mean magnetic field. Our study concentrates on the dependence of
various statistical properties of both decaying and statistically steady MHD
turbulence on the magnetic Prandtl number PrM over a large range, namely
0.016 PrM 6 10. We obtain data for a wide variety of statistical measures,
such as probability distribution functions (PDFs) of the moduli of the vorticity
and current density, the energy dissipation rates, and velocity and magnetic-
field increments, energy and other spectra, velocity and magnetic-field structure
functions, which we use to characterize intermittency, isosurfaces of quantities,
such as the moduli of the vorticity and current density, and joint PDFs, such
as those of fluid and magnetic dissipation rates. Our systematic study uncovers
interesting results that have not been noted hitherto. In particular, we find a
crossover from a larger intermittency in the magnetic field than in the velocity
field, at large PrM, to a smaller intermittency in the magnetic field than in the
velocity field, at low PrM. Furthermore, a comparison of our results for decaying
MHD turbulence and its forced, statistically steady analogue suggests that we
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have strong universality in the sense that, for a fixed value of PrM, multiscaling
exponent ratios agree, at least within our error bars, for both decaying and
statistically steady homogeneous, isotropic MHD turbulence.
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1. Introduction

The hydrodynamics of conducting fluids is of great importance in many terrestrial
and astrophysical phenomena. Examples include the generation of magnetic fields via
dynamo action in the interstellar medium, stars and planets [1]–[11] and in liquid–metal
systems [12]–[18] that are studied in laboratories. The flows in such settings, which can
be described at the simplest level by the equations of magnetohydrodynamics (MHD), are
often turbulent [5]. The larger the kinetic and magnetic Reynolds numbers, Re = U L/ν and
ReM = U L/η, respectively, the more turbulent is the motion of the conducting fluid; here L
and U are typical length and velocity scales in the flow, ν is the kinematic viscosity and η is the
magnetic diffusivity. The statistical characterization of turbulent MHD flows, which continues to
pose challenges for experiments [19], direct numerical simulations (DNS) [20] and theory [21],
is even harder than its analogue in fluid turbulence, because (i) we must control both Re and
ReM, and (ii) we must obtain the statistical properties of both the velocity and the magnetic
fields.

The kinematic viscosity ν and the magnetic diffusivity η can differ by several orders of
magnitude, so the magnetic Prandtl number PrM ≡ ReM/Re = ν/η can vary over a large range.
For example, PrM '10−5 in the liquid–sodium system [15, 16], PrM '10−2 at the base of the
Sun’s convection zone [22] and PrM '1014 in the interstellar medium [8, 20]. Furthermore,
two dissipative scales play an important role in MHD; they are the Kolmogorov scale `d (∼ν3/4

at the level of Kolmogorov 1941 (K41) phenomenology [23, 24]) and the magnetic-resistive
scale `M

d (∼η3/4 in K41). A thorough study of the statistical properties of MHD turbulence
must resolve both of these dissipative scales. Given current computational resources, this is a
daunting task at large Re, especially if PrM is significantly different from unity. Thus, most
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DNSs of MHD turbulence [25]–[30] have been restricted to PrM '1. Some DNS studies have
now started moving away from the PrM '1 regime, especially in the context of the dynamo
problem [31, 32].

Here, we initiate a detailed DNS study of the statistical properties of incompressible,
homogeneous and isotropic MHD turbulence for a large range of the magnetic Prandtl number,
namely 0.016 PrM 6 10. There is no mean magnetic field in our DNS [33]; and we restrict
ourselves to Eulerian measurements (for representative Lagrangian studies of MHD turbulence
see [34]). Before we give the details of our DNS study, we highlight a few of our qualitative,
principal results. Elements of some of our results, for the case PrM = 1 and for quantities such
as energy spectra, exist in the MHD-turbulence literature, as can be seen from the representative
references [5, 6, 25, 35] [37]–[39]. However, to the best of our knowledge, no study has
attempted as detailed and systematic an investigation of the statistical properties of MHD
turbulence as we present here, especially with a view to elucidating their dependence on
PrM. Our study uncovers interesting trends that have not been noted hitherto. These emerge
from our detailed characterization of intermittency, via a variety of measures that include
probability distribution functions (PDFs), such as those of the modulus of the vorticity and
the energy dissipation rates, velocity and magnetic-field structure functions that can be used
to characterize intermittency, isosurfaces of quantities, such as the moduli of the vorticity
and current and joint PDFs, such as those of fluid and magnetic dissipation rates. Earlier
DNS studies [30] have suggested that intermittency, as characterized, say, by the multiscaling
exponents for velocity- and magnetic-field structure functions, is more intense for the magnetic
field than for the velocity field when PrM = 1. Our study confirms this and suggests, in
addition, that this result is reversed as we lower PrM. This crossover from larger intermittency
in the magnetic field than in the velocity field, at large PrM, to smaller intermittency in the
magnetic field than in the velocity field, at low PrM, shows up not only in the values of
multiscaling exponent ratios, which we obtain from a detailed local-slope analysis of extended-
self-similarity (ESS) plots [40, 41] of one structure function against another, but also in the
behaviors of tails of PDFs of dissipation rates, the moduli of vorticity and current density, and
velocity and magnetic-field increments. Furthermore, a comparison of our results for decaying
MHD turbulence and its forced, statistically steady analogue suggests that, at least given our
conservative errors, the homogeneous, isotropic MHD turbulence that we study here displays
strong universality [42, 43] in the sense that multiscaling exponent ratios agree for both the
decaying and the statistically steady cases.

The remaining part of this paper is organized as follows. In section 2, we describe the
MHD equations, the details of the numerical schemes we use (section 2.1) and the statistical
measures we use to characterize MHD turbulence (section 2.2). In section 3, we present our
results; these are described in the seven subsections 3.1–3.7 that are devoted, respectively, to
(a) a summary of well-known results from fluid turbulence that are relevant to our study; (b)
the temporal evolution of quantities such as the energy and energy-dissipation rates; (c) energy,
dissipation-rate, Elsässer-variable and effective-pressure spectra; (d) various PDFs that can be
used, inter alia, to characterize the alignments of vectors, such as the vorticity with, say, the
eigenvectors of the rate-of-strain tensor; (e) velocity and magnetic-field structure functions that
can be used to characterize intermittency; (f) isosurfaces of quantities such as the moduli of the
vorticity and current; and (g) joint PDFs, such as those of fluid and magnetic dissipation rates.
Section 4 contains a discussion of our results.

New Journal of Physics 13 (2011) 013036 (http://www.njp.org/)
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2. Magnetohydrodynamic (MHD) equations

The hydrodynamics of a conducting fluid is governed by the MHD equations [1]–[5], [7],
in which the Navier–Stokes equation for a fluid is coupled to the induction equation for the
magnetic field,

∂u
∂t

+ (u · ∇)u = ν∇
2u − ∇ p̄ + (b · ∇)b + f u, (1)

∂b
∂t

+ (u · ∇)b = (b · ∇)u + η∇
2b + f b. (2)

Here, u, b, ω = ∇ × u and j = ∇ × b are, respectively, the velocity field, the magnetic field, the
vorticity and the current density at the point x and time t ; ν and η are the kinematic viscosity and
the magnetic diffusivity, respectively, and the effective pressure is p̄ = p + (b2/8π), where p is
the pressure; f u and f b are the external forces; while studying decaying MHD turbulence,
we set f u = f b = 0. The MHD equations can also be written in terms of the Elsässer
variables z±

= u ± b [7, 25]. We restrict ourselves to low-Mach-number flows, so we use the
incompressibility condition ∇ · u(x, t) = 0; and we must, of course, impose ∇ · b(x, t) = 0. By
using the incompressibility condition, we can eliminate the effective pressure and obtain the
velocity and magnetic fields via a pseudospectral method that we describe in section 2.1. The
effective pressure then follows from the solution of the Poisson equation,

∇
2 p̄ = ∇ · [(b · ∇)b − (u · ∇)u]. (3)

2.1. Direct numerical simulation

Our goal is to study the statistical properties of homogeneous and isotropic MHD turbulence,
so we use periodic boundary conditions and a standard pseudospectral method [44] with N 3

collocation points in a cubical simulation domain with sides of length L = 2π ; thus, we evaluate
spatial derivatives in Fourier space and local products of fields in real space. We use the 2/3
dealiasing method [44] to remove aliasing errors; after this dealiasing, kmax is the magnitude of
the largest-magnitude wave vectors resolved in our DNS studies. We have carried out extensive
simulations with N = 512 and N = 1024; the parameters that we use for different runs are given
in table 1 for decaying and statistically steady turbulence.

We use a second-order, slaved, Adams–Bashforth scheme, with a time step δt , for the
time evolution of the velocity and magnetic fields; this time step is chosen such that the
Courant–Friedrichs–Lewy (CFL) condition is satisfied [45].

In our decaying-MHD-turbulence studies, we have taken the initial (superscript 0) energy
spectra E0

u(k) and E0
b(k), for velocity and magnetic fields, respectively, to be the same;

specifically, we have chosen

E0
u(k) = E0

b(k) = E0k4 exp(−2k2), (4)

where E0, the initial amplitude, is chosen in such a way that we resolve both fluid and magnetic
dissipation scales ηu

d and ηb
d , respectively: in all, except for a few, of our runs, kmaxη

u
d & 1 and

kmaxη
b
d & 1. The initial phases of the Fourier components of the velocity and magnetic fields are

taken to be different and chosen such that they are distributed randomly and uniformly between
0 and 2π . In such studies, it is convenient to pick a reference time at which various statistical
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Table 1. List of parameters for our 16 DNS runs R1–R5, R3B–R5B, R1C–R4C
and R1D–R4D: N 3 is the number of collocation points in our simulation, ν is the
kinematic viscosity, PrM is the magnetic Prandtl number, δt is the time step; and
urms, `I, λ and Reλ are the root-mean-sqare velocity, the integral scale, the Taylor
microscale and the Taylor-microscale Reynolds number, respectively. These are
obtained at tc for our decaying-MHD turbulence runs R1–R5, R3B–R5B and
R1C–R4C; and for statistically steady MHD turbulence (runs R1D–R4D), these
are averaged over the statistically steady state; here, tc (iteration steps multiplied
by δt) is the time at which the cascades for both the fluid and the magnetic fields
are completed (see text); ηu

d and ηb
d are, respectively, the Kolmogorov dissipation

length scales for the fluid and magnetic fields. kmax is the magnitude of the
largest-magnitude wave vectors resolved in our DNS studies which use the 2/3
dealiasing rule; kmax '170.67 and 341.33 for N = 512 and 1024, respectively.

Runs N ν PrM δt urms `I λ Reλ tc kmaxη
u
d kmaxη

b
d

R1 512 10−4 0.1 10−3 0.34 0.65 0.18 610 9.7 0.629 2.280
R2 512 5 × 10−4 0.5 10−3 0.34 0.67 0.27 187 9.1 1.752 2.389
R3 512 10−3 1 10−3 0.34 0.70 0.35 121 8.1 2.772 2.444
R4 512 5 × 10−3 5 10−3 0.33 0.76 0.60 39 7.0 8.224 2.692
R5 512 10−2 10 10−3 0.31 0.80 0.73 23 6.5 13.267 2.836
R3B 512 10−3 1 10−4 1.07 0.62 0.20 210 3.1 1.175 1.052
R4B 512 5 × 10−3 5 10−4 2.32 0.63 0.24 110 1.4 1.961 0.644
R5B 512 10−2 10 10−4 3.21 0.63 0.26 85 1.0 2.490 0.520
R1C 1024 10−4 0.01 10−4 0.35 0.65 0.23 810 8.0 1.431 22.12
R2C 1024 10−4 0.1 10−4 1.11 0.47 0.08 890 2.9 0.472 1.690
R3C 1024 10−3 1 10−4 1.14 0.49 0.15 172 2.5 1.996 1.779
R4C 1024 10−2 10 10−4 2.37 0.51 0.24 57 1.1 5.550 1.164
R1D 512 10−4 0.01 10−4 1.31 0.82 0.18 2367 – 0.320 5.364
R2D 512 10−4 0.1 10−4 0.99 0.74 0.14 1457 – 0.334 1.145
R3D 512 10−3 1 10−4 1.06 0.65 0.17 239 – 1.264 1.033
R4D 512 10−2 10 10−4 1.04 0.67 0.23 61 – 6.505 1.129

properties can be compared. One such reference time is the peak that occurs in a plot of the
energy dissipation versus time; this reference time has been used in studies of decaying fluid
turbulence [46, 47], decaying fluid turbulence with polymer additives [48, 49] and decaying
MHD turbulence [25, 26, 50]. Such peaks are associated with the completion of the energy
cascade from large length scales, at which energy is injected into the system, to small length
scales, at which viscous losses are significant. In the MHD case, these peaks occur at slightly
different times, tu and tb, respectively, in plots of the kinetic (εu) and magnetic (εb) energy-
dissipation rates. In our decaying-MHD-turbulence studies, we store velocity and magnetic
fields at time tc; if tu > tb, tc = tu; and tc = tb otherwise; from these fields we calculate the
statistical properties that we present in the next section.

In the simulations in which we force the MHD equations to obtain a nonequilibrium
statistically steady state (NESS), we use a generalization of the constant-energy-injection
method described in [51]. We do not force the magnetic field directly, so we choose fb = 0.

New Journal of Physics 13 (2011) 013036 (http://www.njp.org/)
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The force f u(x, t) is specified most simply in terms of f̃ u(k, t), its spatial Fourier components,
as follows,

f̃ u(k, t) =
P2(k f − k)

2Eu(k f , t)
ũ(k, t), (5)

where 2(k f − k) is 1 if k 6 k f and 0 otherwise, P is the power input, and Eu(k f , t) =∑
k6k f

Eu(k, t); in our DNS we use k f = 2. This yields a statistically steady state in which
the mean value of the total energy dissipation rate per unit volume balances the power input, i.e.

〈ε〉 = P; (6)

once this state has been established, we save 50 representative velocity- and magnetic-
field configurations over '36.08tI, 29.29tI, 32.61tI and 30.95tI, for R1D, R2D, R3D and
R4D, respectively, where tI = `I/urms is the integral-scale eddy-turnover time. We use these
configurations to obtain the statistical properties we describe below.

For decaying MHD turbulence, we have carried out eight simulations with 5123 collocation
points and four simulations with 10243 collocation points. The parameters used in these
simulations, which we have organized into three sets, are given in table 1.

In the first set of runs, R1–R5, we set the magnetic diffusivity η = 10−3 and use five values
of ν, namely 10−4, 5.0 × 10−4, 10−3, 5.0 × 10−3 and 10−2, which yield PrM = 0.1, 0.5, 1, 5
and 10. These runs have been designed to study the effects, on decaying MHD turbulence, of
an increase in PrM, with the initial energy held fixed: in particular, we use E0

u = E0
b '0.32 in

equation (4) for runs R1–R5. Given that this initial energy and η are both fixed, an increase in
PrM leads to a decrease in Re and thus an increase in kmaxη

u
d and kmaxη

b
d, as we discuss in detail

later.
In our second set of decaying-MHD-turbulence runs, R3B, R4B and R5B, we increase E0

in equation (4) as we increase ν and thereby PrM, so that kmaxη
u
d '1 and kmaxη

b
d '1. Thus, in

these runs, the inertial ranges in energy spectra extend over comparable ranges of the wavevector
magnitude k.

Our third set of decaying-MHD-turbulence runs, R1C, R2C, R3C and R4C, uses 10243

collocation points and PrM = 0.01, 0.1, 1 and 10, respectively. By comparing the results of
these runs with those of R1–R5, R3B, R4B and R5B, we can check whether our qualitative
results depend significantly on the number of collocation points that we use.

We have carried out another set of four runs, R1D, R2D, R3D and R4D, in which we force
the MHD equations, as described above, until we obtain a NESS. These runs help us to compare
the statistical properties of decaying and statistically steady turbulence. In these runs, we use
5123 collocation points and ν and η such that PrM = 0.01, 0.1, 1 and 10, respectively.

2.2. Statistical measures

We use several statistical measures to characterize homogeneous, isotropic MHD turbulence.
Some, but not all, of these have been used in earlier DNS studies [25, 29, 35, 38], [52]–[54] and
solar-wind turbulence [55]–[57].

We calculate the kinetic, magnetic and total energy spectra Eu(k) =
∑

k3|k|=k |ũ(k)|2,

Eb(k) =
∑

k3|k|=k |b̃(k)|2 and E(k) = Eu(k) + Eb(k), respectively, the kinetic, magnetic and
total energies Eu =

∑
k Eu(k)/2, Eb =

∑
k Eb(k)/2 and E = Eu + Eb and the ratio Eb/Eu .

New Journal of Physics 13 (2011) 013036 (http://www.njp.org/)
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Spectra for the Elsässer variables, energy dissipation rates and the effective pressure are,
respectively, Ez±(k) =

∑
k3|k|=k |z̃±(k)|2, εu(k) = νk2 Eu(k), εb(k) = νk2 Eb(k) and P(k) =∑

k3|k|=k | ˜̄p(k)|2.
Our MHD simulations are characterized by the Taylor-microscale Reynolds number

Reλ = urmsλ/ν, the magnetic Taylor-microscale Reynolds number Rmλ = urmsλ/η and the
magnetic Prandtl number PrM = Rmλ/Reλ = ν/η, where the root-mean-square velocity urms =
√

2Eu/3 and the Taylor microscale λ = [
∑

k k2 E(k)/E]−1/2. We also calculate the integral
length scale `I = [

∑
k E(k)/k]/E , the mean kinetic energy dissipation rate per unit mass,

εu = ν
∑

i, j(∂i u j + ∂ j ui)
2
= ν

∑
k k2 Eu(k), the mean magnetic energy dissipation rate per unit

mass εb = η
∑

i, j(∂i b j + ∂ j bi)
2
= η

∑
k k2 Eb(k), the mean energy dissipation rate per unit mass

ε = εu + εb and the dissipation length scales for velocity and magnetic fields ηu
d = (ν3/εu)

1/4 and
ηb

d = (η3/εb)
1/4, respectively.

We calculate the eigenvalues 3u
n and the associated eigenvectors êu

n , with n = 1, 2 or 3,
of the rate-of-strain tensor S whose components are Si j = ∂i u j + ∂ j ui . Similarly 3b

1, 3b
2 and

3b
3 denote the eigenvalues of the tensile magnetic stress tensor T, which has components

Ti j = −bi b j ; the corresponding eigenvectors are, respectively, êb
1 , êb

2 and êb
3 .

For incompressible flows
∑

n 3u
n = 0, so at least one of the eigenvalues 3u

n must be positive
and another negative; we label them in such a way that 3u

3 is positive, 3u
1 is negative and 3u

2 lies
in between them; note that 3u

2 can be positive or negative. We obtain PDFs of these eigenvalues;
furthermore, we obtain PDFs of the cosines of the angles that the associated eigenvectors make
with vectors such as u, ω, etc. These PDFs and those of quantities such as the local cross helicity
HC = u · b help us to quantify the degree of alignment of pairs of vectors such as u and b [53].
We also compare PDFs of magnitudes of local vorticity ω, the current density j and local energy
dissipation rates εu and εb to obtain information about intermittency in velocity and magnetic
fields.

We also obtain several interesting joint PDFs; to the best of our knowledge, these have not
been obtained earlier for MHD turbulence. We first obtain the velocity-derivative tensor A,
also known as the rate-of-deformation tensor, with components Ai j = ∂i u j , and then the
invariants Q = −

1
2 tr(A2) and R = −

1
3 tr(A3), which have been used frequently to characterize

fluid turbulence [58]–[60]. The zero-discriminant line D ≡
27
4 R2 + Q3

= 0 and the Q and R axes
divide the Q R plane into qualitatively different regimes. In particular, regions in a turbulent
flow can be classified as follows: when Q is large and negative, local strains are high and vortex
formation is not favoured; furthermore, if R > 0, fluid elements experience axial strain, whereas
if R < 0, they feel biaxial strain. In contrast, when Q is large and positive, vorticity dominates
the flow; if, in addition, R < 0, vortices are compressed, whereas if R > 0, they are stretched.
Thus, some properties of a turbulent flow can be highlighted by making contour plots of the
joint PDF of Q and R; these Q R plots show a characteristic, tear-drop shape. We explore the
forms of these and other joint PDFs, such as joint PDFs of εu and εb, in MHD turbulence.

To characterize intermittency in MHD turbulence, we calculate the order-p, equal-time,
longitudinal structure functions Sa

p(l) ≡ 〈|δa‖(x, l)|p
〉, where the longitudinal component of

the field a is given by δa‖(x, l) ≡ [a(x + l, t) − a(x, t)] ·
l
l , where a can be u, b or one of the

Elsässer variables. From these structure functions, we also obtain the hyperflatness Fa
6 (l) =

Sa
6 (l)/[Sa

2(l)]
3. For separations l in the inertial range, i.e. ηu

d, η
b
d � l � L , we expect Sa

p(l) ∼

lζ p
a
, where ζ a

p are the inertial-range multiscaling exponents for the field a; the Kolmogorov
phenomenology of 1941 [23]–[25], henceforth referred to as K41, yields the simple scaling
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Figure 1. Plots from our DNS of decaying fluid turbulence in the Navier–Stokes
equation with 5123 collocation points. (a) Plots of the energy E (red full
line) and mean energy dissipation rate ε (blue dotted line) versus time t
(given as a product of the number of iterations and the time step δt). (b)
Log–log (base 10) plots of the energy spectrum E(k) (red dashed line) and the
corresponding compensated spectrum k5/3 E(k) (blue dotted line) versus k. The
black solid line shows the K41 result k−5/3 for comparison. (c) Log–log (base 10)
plot of the spectrum of the energy-dissipation spectrum (or enstrophy spectrum)
ε(k). (d) Log–log (base 10) plots of the pressure spectrum P(k) (red dashed line)
and the compensated pressure spectrum k7/3 P(k) (blue dotted line). The black
solid line shows the K41 result k−7/3 for comparison.

result ζ aK 41
p = p/3; but multiscaling corrections are significant with ζ a

p 6= ζ aK 41
p (section 3).

From the increments δa‖(x, l) ≡ [a(x + l, t) − a(x, t)] ·
l
l , we also obtain the dependence of

PDFs of δa‖ on the scale l.

3. Results

To set the stage for the types of studies we carry out for MHD turbulence, we begin with a
very brief summary of similar and well-known results from studies of homogeneous, isotropic
Navier–Stokes turbulence, which can be found, e.g., in [24, 46, 47], [61]–[67].

3.1. Overview of fluid turbulence

For ready reference, we show here illustrative plots from a DNS study that we have carried out
for the three-dimensional Navier–Stokes equation by using a pseudospectral method, with 5123

collocation points and the 2/3 rule for removing aliasing errors; here, ν = 0.001, Reλ '340 and
kmaxη

u
d '0.3.
In decaying fluid turbulence, energy is injected at large spatial scales, as described in the

previous section for the MHD case. This energy cascades down till it reaches the dissipative
scale at which viscous losses are significant. We study various statistical properties; these are
given in points (i)–(vi) below.

(i) Plots of the energy E and the mean energy dissipation rate ε versus time show,
respectively, a gentle decay and a maximum, as shown, e.g., by the full red and dotted blue
curves in figure 1(a). This maximum in ε is associated with the completion of the energy
cascade at a time tc; the remaining properties (ii)–(vi) are obtained at tc. (ii) If Reλ is sufficiently
large and we have a well-resolved DNS (i.e. kmaxη

u
d > 1), then at tc, the spectrum E(k) shows

a well-developed inertial range, where at the K41 level E(k) ∼ k−5/3, and a dissipation range,
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Figure 2. PDFs from our DNS of decaying fluid turbulence in the Navier–Stokes
equation with 5123 collocation points. (a) Semilog (base 10) plots of PDFs of
eigenvalues of the rate-of-strain tensor S, namely 3u

1 (red full line), 3u
2 (green

dashed line) and 3u
3 (blue dotted line). (b) Semilog (base 10) plots of PDFs of

cosines of angles between the vorticity ω and eigenvectors of S, namely êu
1 (red

full line), êu
2 (green dashed line) and êu

3 (blue dotted line). (c) Semilog (base 10)
plots of PDFs of cosines of angles between the velocity u and eigenvectors of
S, namely êu

1 (red full line), êu
2 (green dashed line) and êu

3 (blue dotted line).
(d) Semilog (base 10) plots of PDFs of cosines of angles between the velocity u
and vorticity ω.

in which the behavior of the energy spectrum is consistent with E(k) ∼ kα exp(−βk), where
α and β are non-universal, positive constants [62, 65] and 5kd < k < 10kd, with kd = 1/ηu

d . An
illustrative energy spectrum is shown by the dashed red line in figure 1(b); the blue dotted curve
shows the compensated spectrum k5/3 E(k); the associated dissipation or enstrophy spectrum
ε(k) is shown in figure 1(c) and the inertial-range pressure spectrum [68], P(k) ∼ k−7/3 at
the K41 level, is shown in figure 1(d). (Note that our DNS for the Navier–Stokes equation,
which suffices for our purposes of illustration, does not have a well-resolved dissipation range
because kmaxη

u
d '0.3 < 1; this is also reflected in the lack of a well-developed maximum in the

enstrophy spectrum of figure 1(c).) (iii) Illustrative PDFs of the eigenvalues 3u
n of the rate-

of-strain tensor S are given for n = 1, 2 and 3, respectively, by the full red, dashed green and
dotted blue curves in figure 2(a); PDFs of the cosines of the angles that the vorticity ω and the
velocity u make with the associated eigenvectors êu

n are given, respectively, in figures 2(b) and
(c) via full red (n = 1), dashed green (n = 2) and dotted blue (n = 3) curves; these show that
both ω and u have a tendency to be preferentially aligned parallel or antiparallel to êu

2 [60];
the PDF of the cosine of the angle between u and ω also indicates preferential alignment or
antialignment of these two vectors, but with a greater tendency towards alignment, as found in
experiments with a small amount of helicity [69] and as illustrated in figure 2(d). Finally, we
give representative PDFs of the pressure p, the modulus of vorticity ω = |ω| and the local energy
dissipation ε in figures 3(a)–(c), respectively; note that the PDF of the pressure is negatively
skewed. (iv) Inertial-range structure functions Su

p(l) ∼ lζ p
u

show significant deviations [24]
from the K41 result ζ uK 41

p = p/3, especially for p > 3. From these structure functions, we can
obtain the hyperflatness Fu

6 (l); this increases as the length scale l decreases, a clear signature of
intermittency, as shown, e.g., in [49, 66]. This intermittency also leads to non-Gaussian tails,
especially for small l, in PDFs of velocity increments (see e.g. [66, 70, 71]), such as δu‖(l).
(v) Small-scale structures in turbulent flows can be visualized via isosurfaces [72] of, say, ω, ε

and p, illustrative plots of which are given in figures 4(a)–(c); these show that regions of large
ω are organized into slender tubes, whereas isosurfaces of ε look like shredded sheets; pressure
isosurfaces also show tubes [37, 47] but some studies have suggested the term ‘cloud-like’ for
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Figure 3. PDFs from our DNS of decaying fluid turbulence in the Navier–Stokes
equation with 5123 collocation points. Semilog (base 10) plots of the PDFs of
(a) the pressure p, (b) the modulus of vorticity ω and (c) the local energy-
dissipation rate ε.

Figure 4. Isosurfaces of (a) the modulus of vorticity ω, (b) the local energy-
dissipation rate ε and (c) the local pressure p, from our DNS of decaying fluid
turbulence in the Navier–Stokes equation with 5123 collocation points. The
isovalues used in these plots are two standard deviations more than the mean
values of the quantities.

them [61]. (vi) Joint PDFs also provide useful information about turbulent flows; in particular,
contour plots of the joint PDF of Q and R, as in the representative figure 5, show a characteristic
tear-drop structure.

The properties of statistically steady, homogeneous, isotropic fluid turbulence are similar
to those described in points (ii)–(vi) in the preceding paragraph for the case of decaying fluid
turbulence at cascade completion at tc. In particular, the strong-universality [42] hypothesis
suggests that the multiscaling exponents ζ u

p have the same values in decaying and statistically
steady turbulence.

The remaining part of this section is devoted to our detailed study of the MHD-turbulence
analogues of the properties (i)–(vi) summarized above; these are discussed, respectively, in the
six sections 3.2–3.7.

3.2. Temporal evolution

We examine the time evolution of the energy, the energy-dissipation rates and related quantities,
first for decaying and then for statistically steady MHD turbulence.
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Figure 5. Q R plot, i.e. the joint PDF of Q and R (see text) shown as a filled
contour plot in our log–log (base 10) scale, obtained from a DNS of decaying
fluid turbulence in the Navier–Stokes equation with 5123 collocation points.

Figure 6 shows how the total energy E (red full line), the kinetic energy Eu (green
dashed line) and the magnetic energy Eb (blue dotted line) evolve with time t (given as a
product of the number of iterations and the time step δt) for runs R1–R5 (figures 6(a.1)–(e.1))
and runs R3B–R5B (figures 6(f.1)–(h.1)) for decaying MHD turbulence. Figure 6 also shows
similar plots for the mean energy dissipation rate ε (red full line), the mean kinetic-energy
dissipation rate εu (green dashed line) and the mean magnetic-energy dissipation rate εb

(blue dotted line) versus time t for runs R1–R5 (figures 6(a.2)–(e.2)) and runs R3B–R5B
(figures 6(f.2)–(h.2)). In addition, figure 6 depicts the time evolution of the ratio Eb/Eu for
runs R1–R5 (figures 6(a.3)–(e.3)) and runs R3B–R5B (figures 6(f.3)–(h.3)). We see from these
figures that, for all the values of PrM we have used, the energies E and Eu decay gently with t
but Eb rises initially such that the ratio Eb/Eu rises, nearly monotonically, with t over the times
we have considered; this is an intriguing trend that does not seem to have been noted earlier. The
times over which we have carried out our DNS are comparable to the cascade-completion time tc

that can be obtained from the peaks in the plots of ε, εu and εb versus t (figures 6(a.2)–(h.2)); by
comparing these plots we see that, as we move from PrM = 0.1 to PrM = 10, with fixed η,
we find that (εu − εb) and (tb − tu) grow from negative values to positive ones because εu

increases with PrM, where tb and tu are the positions of the cascade-completion maxima in
εb and εu , respectively. We do not pursue the time evolution of our system well beyond tu and tb

because the integral scale begins to grow thereafter and, eventually, can become comparable to
the linear size of the simulation domain [46].

Figures 7(a.1)–(d.1) show how the total energy E (red full line), the total kinetic energy Eu

(green dashed line) and the total magnetic energy Eb (blue dotted line) evolve with time t (given
as a product of the number of iterations and the time step δt) for, respectively, runs R1D–R4D
for forced and statistically steady MHD turbulence. Figures 7(a.2)–(d.2) show similar plots
for the mean energy dissipation rate ε (red full line), the mean kinetic-energy dissipation rate
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Figure 6. Plots versus time t (given as a product of the number of iterations
and the time step δt) of energies (a.1)–(h.1): total energy E (red full line),
kinetic energy Eu (green dashed line) and magnetic energy Eb (blue dotted
line); of energy-dissipation rates (a.2)–(h.2): mean energy dissipation rate ε

(red full line), kinetic-energy dissipation εu (green dashed line) and magnetic-
energy dissipation rate εb (blue dotted line); and of the ratio Eb/Eu (a.3)–(h.3),
generically, for decaying simulations (a) PrM = 0.1 (R1), (b) PrM = 0.5 (R2),
(c) PrM = 1.0 (R3), (d) PrM = 5.0 (R4), (e) PrM = 10.0 (R5), (f) PrM = 1.0
(R3B), (g) PrM = 5.0 (R4B) and (h) PrM = 10.0 (R5B).

εu (green dashed line) and the mean magnetic-energy dissipation rate εb (blue dotted line)
versus time t for, respectively, runs R1D–R4D. Figures 7(a.3)–(d.3) depict the time evolution
of the ratio Eb/Eu for these runs. We see from these figures that a statistically steady state
is established in which the energies E , Eu and Eb, the dissipation rates ε, εu and εb and the
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Figure 7. Plots versus time t (given as a product of the number of iterations
and the time step δt) of energies (a.1)–(d.1): total energy E (red full line),
kinetic energy Eu (green dashed line) and magnetic energy Eb (blue dotted
line); of energy-dissipation rates (a.2)–(d.2): mean energy dissipation rate ε (red
full line), kinetic-energy dissipation rate εu (green dashed line); and magnetic-
energy dissipation rate εb (blue dotted line) and of the ratio Eb/Eu (a.3)–(d.3),
generically, for forced simulations (a) PrM = 0.01 (R1D), (b) PrM = 0.1 (R2D),
(c) PrM = 1.0 (R3D) and (d) PrM = 10 (R4D).

ratio Eb/Eu fluctuate about their mean values (after initial transients have died out). The mean
value of Eb/Eu increases from about 0.2–0.3 to Eb/Eu '1 as PrM increases from 0.01 to 10.
Furthermore, the mean values of the dissipation rates εu and εb are such that (εu − εb) grows
from a negative value '−1 to a value close to zero as PrM increases from 0.01 to 10.

3.3. Spectra

We now discuss the behaviors of the energy, kinetic-energy, magnetic-energy, Elsässer variable,
dissipation-rate and effective-pressure spectra, first for decaying and then for statistically steady
MHD turbulence. In the former case, spectra are obtained at the cascade-completion time tc; in
the latter, they are averaged over the statistically steady state that we obtain.

We present compensated spectra of the total energy Ec(k) = ε−2/3k5/3 E(k) (red full line),
the kinetic energy Eu

c (k) = ε−2/3k5/3 Eu(k) (green dashed line) and the total magnetic energy
Eb

c (k) = ε−2/3k5/3 Eb(k) (blue dotted line) at tc for runs R1–R5 (figures 8(a.1)–(e.1)), R3B–R5B
(figures 8(f.1)–(h.1)) and R1C–R4C (figures 8(a.2)–(d.2)) for decaying MHD turbulence; and
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Figure 8. Log–log (base 10) plots of the compensated energy spectra
ε−2/3k5/3 E(k) (red full lines), ε−2/3k5/3 Eu(k) (green dashed lines) and
ε−2/3k5/3 Eb(k) (blue dotted lines); on the vertical axes these are denoted
generically as E c(k): (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM =

1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2)
PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for
decaying MHD turbulence; and for statistically steady MHD turbulence (a.3)
PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3)
PrM = 10.0 (R4D).

runs R1D–R4D (figures 8(a.3)–(d.3)) show these for statistically steady MHD turbulence. From
figures 8(a.1)–(e.1) and table 1, we see that ηu

d increases as we increase ν to increase PrM,
because the initial energy is the same for runs R1–R5, so the dissipation tail in Eu

c (k) is drawn
in towards smaller and smaller values of k as we move from PrM = 0.1 to PrM = 10; between
PrM = 0.5 and PrM = 1, the tails of Eu

c (k) and Eb
c (k) and eventually Eb

c (k) dominate and
become indistinguishable from Ec(k) on the scales of figures 8(d.1) and (e.1). A comparison
of figures 8(f.1)–(h.1) shows that, if we increase PrM from 1 to 10, we can keep both kmaxη

u
d
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and kmaxη
b
d close to 1, so the dissipation ranges of these spectra span comparable ranges of

k; however, as PrM increases, more and more of the energy is concentrated in the magnetic
field. These trends are not affected (a) if we increase the number of collocation points, as
can be seen from the compensated spectra in figures 8(a.2)–(d.2) for runs R1C–R4C, which
use 10243 collocation points, or (b) if we study energy spectra for statistically steady MHD
turbulence, as can be seen from the compensated spectra in figures 8(a.3)–(d.3) for runs
R1D–R4D. Figures 8(c.1), (g.1), (c.2) and (c.3), for runs R3 (Reλ = 121), R3B (Reλ = 210),
R3C (Reλ = 172) and R3D (Reλ = 239), respectively, all but one lie in one column and all
have PrM = 1; so they provide a convenient way of comparing the Reλ dependence of these
spectra with a fixed value of PrM = 1. All of the spectra in the subfigures of figure 8 have been
compensated for by the 5/3 power of k and, to the extent that they show small, flat parts, their
inertial-range, energy-spectra scalings are consistent with k−5/3 behaviors; other powers, such
as −3/2, can also give small, flat parts in compensated spectra. A detailed error analysis is
required to decide which power is most consistent with our data; we defer such an error analysis
to section 3.5, where we carry it out for structure functions.

Compensated spectra of the Elsässer variables, namely E+
c (k) = ε−2/3k5/3 E+(k) (red full

lines) and E−

c (k) = ε−2/3
u k5/3 E−(k) (blue dashed lines), are shown, at the cascade-completion

time tc, for the decaying-MHD turbulence runs R1–R5 in figures 9(a.1)–(e.1), R3B–R5B
in figures 9(f.1)–(h.1) and R1C–R4C in figures 9(a.2)–(d.2); and figures 8(a.3)–(d.3) show
these spectra for statistically steady MHD turbulence in runs R1D–R4D, respectively. Note
that the dissipation ranges of E+

c (k) and E−

c (k) overlap nearly on the scales of these figures.
Differences between these are most pronounced at small k, where, typically, E−

c (k) lies below
E+

c (k); these differences decrease with increasing PrM if we hold the initial energy fixed as in
figures 9(a.1)–(e.1) for runs R1–R5.

Next we come to the energy-dissipation (or enstrophy) spectra εu(k) = k2 Eu(k) (red full
line) and εb(k) = k2 Eb(k) (blue dashed line) at tc. These are shown, at the cascade-completion
time tc, for the decaying-MHD turbulence runs R1–R5 in figures 10(a.1)–(e.1), R3B–R5B in
figures 10(f.1)–(h.1) and R1C-R4C in figures 10(a.2)–(d.2); and figures 10(a.3)–(d.3) depict
these spectra for statistically steady MHD-turbulence runs R1D–R4D. To the extent that most
of these spectra show maxima at values of k at the beginning of the dissipation range, most of
our runs have well-resolved dissipation ranges; this also follows from the values of kmaxη

u
d and

kmaxη
b
d in table 1. Runs R1D and R2D have slightly under-resolved fluid-dissipation ranges with

kmaxη
u
d ' 0.32 and 0.33, respectively; and, for the former, a barely discernible, dissipation-range

maximum in εu(k); however, as shown in our Navier–Stokes DNS in section 3.1, reasonable
results can be obtained for various statistical properties with kmaxη

u
d ' 0.3. The elucidation of

the behaviors of dissipation-range spectra of course requires large values of kmaxη
u
d or kmaxη

b
d;

in particular, runs R5 and R1C, with kmaxη
u
d ' 13.3 and kmaxη

b
d '22.1, respectively, are well

suited for uncovering the functional forms of Eu(k) and Eb(k) in their dissipation ranges. In
figures 11(a) and (b), we show, respectively, the kinetic- and magnetic-energy spectra Eu(k)

and Eb(k) deep in their dissipation ranges for runs R5 and R1, respectively; our data for
these spectra can be fitted to the form ∼kα exp(−βk) for k deep in the dissipation range
and α and β non-universal numbers that depend on the parameters of the simulation; similar
results have been obtained for fluid turbulence [62, 65]. In particular, our data (figures 11(a)
and (b)) for runs R5 and R1C are consistent with Eu(k) ∼ k2.68 exp(−0.235k), for 5ku

d < k <

10ku
d with ku

d = 1/ηu
d , and Eb(k) ∼ k−5.24 exp(−0.014k), for 5kb

d < k < 10kb
d with kb

d = 1/ηb
d,

respectively.
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Figure 9. Log–log (base 10) plots of compensated energy spectra, E±

c (k) =

k5/3 E±(k), with k being the magnitude of the wave vector, for the Elsässer
variables fields z+ (red full line) and z− (blue dashed line): (a.1) PrM = 0.1 (R1),
(b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM =

10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0
(R5B), (a.2) PrM = 0.01 (R1C), (b.2) PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C)
and (d.2) PrM = 10.0 (R4C) for decaying MHD turbulence; and for statistically
steady MHD turbulence (a.3) PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3)
PrM = 1.0 (R3D) and (d.3) PrM = 10.0 (R4D).

We now turn to the spectra for the effective pressure P(k) (red full lines) and their
compensated versions k7/3 P(k) (blue dashed lines) that are shown at tc for runs R1–R5
(figures 12(a.1)–(e.1)) and R3B–R5B (figures 12(f.1)–12(h.1)) for decaying MHD turbulence;
and for statistically steady MHD turbulence they are shown in figures 12(a.2)–(d.2) for runs
R1D–R4D. Pressure spectra have been studied for fluid turbulence as, e.g., in [47, 68]; to the
best of our knowledge they have not been obtained for MHD turbulence. The compensated
spectra here show that, for all of our runs, the inertial-range behaviors of these effective-pressure
spectra are consistent with the power law k−7/3; this is consistent with the k−5/3 behaviors of the
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Figure 10. Log–log (base 10) plots of energy-dissipation spectra for the fluid (red
full lines) and magnetic (blue dashed lines) fields, with k being the magnitude of
the wavevector: (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0
(R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C),
(b.2) PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C)
for decaying MHD turbulence; and for statistically steady MHD turbulence
(a.3) PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and
(d.3) PrM = 10.0 (R4D).

energy spectra discussed above. Furthermore, as PrM increases from 0.1 to 10 in runs R1–R5,
P(k) falls more and more rapidly, as can be seen from the vertical scales in figures 12(a.1)–(e.1).

3.4. Probability distribution functions

We calculate several PDFs to characterize the statistical properties of decaying and statistically
steady MHD turbulence. In the former case, PDFs are obtained at the cascade-completion time
tc; in the latter, they are averaged over the statistically steady state that we obtain. The PDFs
we consider are of two types: the first type are PDFs of the cosines of angles between various
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Figure 11. (a) The kinetic energy spectrum Eu(k) (red asterisks) deep in
the dissipation range for run R5; the black line indicates the fit Eu(k) ∼

k2.68exp(−0.235k) for 5ku
d < k < 10ku

d , where ku
d = 1/ηu

d . (b) The magnetic
energy spectrum Eb(k) (red asterisks) deep in the dissipation range for run R1C;
the black line indicates the fit Eb(k) ∼ k−5.24 exp(−0.014k) for 5kb

d < k < 10kb
d ,

where kb
d = 1/ηb

d .

Figure 12. Log–log (base 10) plots of effective pressure spectra P(k) (red
full lines), with k the magnitude of the wave vector, and the corresponding
compensated spectra P(k)k7/3 (blue dashed lines): (a.1) PrM = 0.1 (R1),
(b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1)
PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B), (h.1) PrM =

10.0 (R5B), for decaying MHD turbulence; and for statistically steady MHD
turbulence (a.2) PrM = 0.01 (R1D), (b.2) PrM = 0.1 (R2D), (c.2) PrM = 1.0
(R3D) and (d.2) PrM = 10.0 (R4D).
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vectors, such as u and ω; these help us to quantify the degrees of alignment between such
vectors; the second type are PDFs of quantities such as εu , εb and the eigenvalues of the rate-of-
strain tensor.

In figure 13, we show plots of the PDFs of cosines of the angles between the vorticity ω and
the eigenvectors of the fluid rate-of-strain tensor S, namely ê1

u (red full line), ê2
u (green dashed

lines) and ê3
u (blue dotted lines) for runs R1–R5 and R3B–R5B at the cascade-completion time

tc for the case of decaying MHD turbulence. In figure 14, we show similar plots of the PDFs
of cosines of the angles between the current density j and the eigenvectors of the fluid rate-of-
strain tensor S. The most important features of these figures are sharp peaks in the green dashed
lines; these show that there is a marked tendency for the alignment or antialignment of ω and ê2

u ,
as in fluid turbulence, and of a similar tendency for the alignment or antialignment of j and ê2

u;
these features do not depend very sensitively on PrM. Furthermore, the PDFs of cosines of the
angles between ω and ê1

u (blue dotted lines) and ω and ê3
u (red full lines) show peaks near zero

in figure 13; in contrast, analogous PDFs for the cosines of the angles between j and ê1
u (red full

lines) and ω and ê3
u (blue dotted lines) show nearly flat plateaux in the middle with very gentle

maxima near −0.5 and 0.5 (figure 14). Runs R1C–R4C and R1D–R4D yield similar PDFs, for
the cosines of these angles, so we do not give them here.

Plots of the PDFs of cosines of the angles between the velocity u and the eigenvectors of
the fluid rate-of-strain tensor S are given in figure 15; their analogues for b are given in figure 16.
Again, the most prominent features of these figures are sharp peaks in the green dashed lines;
these show that there is a marked tendency for the alignment or antialignment of u and ê2

u and of
a similar tendency for the alignment or antialignment of j and ê2

u; these features do not depend
very sensitively on PrM. The PDFs of cosines of the angles between u and ê1

u (red full line) and
u and ê3

u (blue dotted lines) show gentle, broad peaks that imply a weak preference for angles
close to 45◦ or 135◦; these peaks are suppressed as we increase PrM (figures 15(a.1)–(e.1) for
runs R1–R5) with fixed initial energy, but they reappear if we compensate for the increase in
PrM by increasing the initial energy (figures 15(f.1)–(h.1)). Similar, but sharper, peaks appear
in the PDFs of cosines of the angles between u and ê1

u (red full lines) and u and ê3
u (blue

dotted lines); these show a weak preference for angles close to 47◦ or 133◦ (figure 16). Some
simulations of compressible MHD turbulence have noted the presence of such peaks [35] for
PrM = 1. The PDFs of figures 13–16 have a marginal dependence on PrM. Furthermore, they
look quite similar to those obtained earlier in convection-driven dynamos (see figure 15 of [36]).

Only one of the eigenvalues 3b
1 of the tensile magnetic stress tensor T is non-zero; and

the corresponding eigenvector ê1
b is identically aligned with b. Thus PDFs of cosines of angles

between u, ω, j and b and the eigenvectors of T are simpler than their counterparts for S and are
not presented here.

Figure 17 shows plots of PDFs of cosines of angles, denoted generically by θ , between (a)
u and b, (b) u and ω, (c) u and j, (d) ω and j, (e) b and ω and (f) b and j for runs R1 (red lines),
R2 (green lines), R3 (blue lines), R4 (black lines) and R5 (cyan lines). These figures show the
following: (a) u and b are more aligned than antialigned (this is related to the small, positive,
mean values of HC (see below) in our runs R1–R5); (b) u and ω are more antialigned than
aligned, as noted for decaying fluid turbulence with slight helicity in [47, 69]; (c) u and j show
approximately equal tendencies for alignment and antialignment; (d) ω and j display a greater
tendency for alignment than antialignment; (e) b and ω have approximately equal tendencies
for alignment and antialignment and (f) b and j are more antialigned than aligned.
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Figure 13. Semilog (base 10) plots of the PDFs of cosines of the angles, denoted
generically by θ , between the vorticity ω and the eigenvectors of the fluid
rate-of-strain tensor S, namely ê1

u (red full line), ê2
u (green dashed line) and ê3

u
(blue dotted line): (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0
(R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B) and (h.1) PrM = 10.0 (R5B) for decaying MHD
turbulence.

Figure 14. Semilog (base 10) plots of the PDFs of cosines of angles, denoted
generically by θ , between the current density j and the eigenvectors of fluid
rate-of-strain tensor S, namely ê1

u (red full line), ê2
u (green dashed line) and ê3

u
(blue dotted line): (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0
(R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B) and (h.1) PrM = 10.0 (R5B) for decaying MHD
turbulence.)

Probability distribution functions of the local cross helicity HC = u · b are shown via green
full lines in figure 18. The arguments of these PDFs are scaled by their standard deviations,
namely σHC; data for the PDFs are obtained at tc for runs R1–R5 in figures 18(a.1)–(e.1),
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Figure 15. Semilog (base 10) plots of the PDFs of cosines of angles, denoted
generically by θ , between the velocity u and the eigenvectors of the fluid rate-
of-strain tensor S, namely ê1

u (red full line), ê2
u (green dashed line) and ê3

u
(blue dotted line): (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0
(R3), (d.1) Pr M = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B) and (h.1) PrM = 10.0 (R5B) for decaying MHD
turbulence.

Figure 16. Semilog (base 10) plots of the PDFs of cosines of angles, denoted
generically by θ , between the magnetic field b and the eigenvectors of the fluid
rate-of-strain tensor S, namely ê1

u (red full line), ê2
u (green dashed line) and ê3

u
(blue dotted line): (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0
(R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B) and (h.1) PrM = 10.0 (R5B).

runs R3B–R5B in figures 18(f.1)–(h.1) and runs R1C–R4C in figures 18(a.2)–(d.2) for
decaying MHD turbulence. For statistically steady MHD turbulence, these PDFs are shown
in figures 18(a.3)–(d.3) for runs R1D–R4D. All of these PDFs have peaks close to HC = 0; this
reflects the tendency for u and b to be aligned or antialigned that we have discussed above.
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Figure 17. Semilog (base 10) plots of PDFs of cosines of angles, denoted
generically by θ , between (a) u and b, (b) u and ω, (c) u and j, (d) ω and j,
(e) b and ω, and (f) b and j for runs R1 (red lines), R2 (green lines), R3 (blue
lines), R4 (black lines) and R5 (cyan lines).

However, these PDFs are quite broad and distinctly non-Gaussian; this can be seen easily from
the values of the mean µHC , standard deviation σHC , skewness γ3,HC and kurtosis γ4,HC given in
table 2. Thus fluctuations of HC away from the mean are very significant. Table 2 also gives the
value of the mean energy E and the ratio E/µHC , which does not appear to be universal; for runs
R1–R5 and R3B–R5B it lies in the range 0.23–0.26, for R1C–R2C in the range −0.04–0.04
and for R1D–R4D in the range 0.05–0.2. For all of our runs, with the exception of R2C, the
mean µHC and the skewness γ3,HC are positive. Even if the PDF of HC had been a Gaussian,
its mean value would have been within one standard deviation of 0; the actual PDF is much
broader than a Gaussian. On symmetry grounds, there is no reason for the system to display a
non-zero value for µHC unless there is some bias in the forcing or in the initial condition (the
latter for the case of decaying turbulence). In any given run, if there is some residual HC, it
is reflected in a slight asymmetry in alignment (or antialignment) of u and b, which we have
studied above via the PDF of the cosine of the angle between u and b. When we consider the
ratio µHC/E , it seems to be substantial in some runs but, given the arguments above, we expect
it to vanish in runs with a very large number of collocation points; indeed, it is very small in runs
R1C–R4C.

Consider now the PDFs of the eigenvalues 31
u (blue dotted line), 32

u (green dashed line)
and 33

u (red full line) of the rate-of-strain tensor S shown in figures 19(a.1)–(e.1) for R1–R5
and figures 19(f.1)–(h.1) for runs R3B–R5B. Recall that these eigenvalues provide measures
of the local stretching and compression of the fluid; also we label the eigenvalues such that
31

u > 32
u > 33

u . The incompressibility condition yields
∑3

n=1 3n
u = 0, when it follows that

31
u > 0 and 33

u < 0; the intermediate eigenvalue 32
u can be either positive or negative. The

illustrative plots in figures 19(a.1)–(h.1) from our decaying-MHD-turbulence runs show that the
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Figure 18. Semilog (base 10) plots of the PDFs of the cross helicity HC =

u · b for (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3),
(d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1)
PrM = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2)
PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for
decaying MHD turbulence; and for statistically steady MHD turbulence (a.3)
PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3)
PrM = 10.0 (R4D); the arguments of the PDFs are scaled by their standard
deviations σHC .

PDFs of 31
u and 33

u have long tails on the right- and left-hand sides, respectively. These tails
shrink as we increase PrM (figures 19(a.1)–(e.1) for runs R1–R5, respectively), by increasing
ν while holding the initial energy fixed; thus, there is a substantial decrease in regions of large
strain. However, if we compensate for the increase in ν by increasing the energy in the initial
condition such that kmaxη

u
d and kmaxη

b
d are both '1, we see that these tails stretch out, i.e. regions

of large strain reappear.
We show PDFs of the kinetic-energy dissipation rate εu (blue dashed lines) and the

magnetic-energy dissipation rate εb (red full lines) that are obtained at tc for runs R1–R5
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Table 2. The mean µHC , standard deviation σHC , skewness µ3,HC and kurtosis
µ4,HC of the PDF of the cross helicity HC for our runs R1–R5 and R3B–R5B
for decaying MHD turbulence at cascade completion; columns 6 and 7 give,
respectively, the mean energy E and ratio of the means of the cross helicity and
the energy, i.e. µHC/E .

Run µH C σH C µ3,H C µ4,H C E µH C/E

R1 0.118 0.173 1.103 4.901 0.461 0.256
R2 0.118 0.169 1.096 4.685 0.467 0.252
R3 0.120 0.170 1.096 4.679 0.490 0.245
R4 0.112 0.153 1.003 4.579 0.477 0.235
R5 0.105 0.141 0.934 4.324 0.460 0.228
R3B 1.217 1.804 1.100 4.912 4.909 0.248
R4B 5.915 8.766 1.097 4.917 24.50 0.241
R5B 11.50 17.05 1.102 5.000 48.32 0.238
R1C 0.014 0.113 0.615 5.748 0.358 0.041
R2C −0.224 1.994 −0.698 8.441 5.440 −0.041
R3C 0.130 2.005 0.313 5.637 5.969 0.022
R4C 0.859 9.156 0.364 5.747 29.05 0.029
R1D 0.169 0.724 0.737 6.813 3.090 0.055
R2D 0.478 0.886 1.126 5.954 2.405 0.199
R3D 0.454 1.244 1.904 13.75 3.039 0.149
R4D 0.389 1.110 1.207 9.225 2.767 0.140

Figure 19. Semilog (base 10) plots of PDFs of the eigenvalues 31
u (blue dotted

line), 32
u (green dashed line) and 33

u (red full line) of the rate-of-strain tensor
S for (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1)
PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM =

5.0 (R4B) and (h.1) PrM = 10.0 (R5B); the arguments of the PDFS are scaled
by their standard deviations.
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Figure 20. Semilog (base 10) plots of PDFs of the local kinetic-energy
dissipation rate εu (blue dashed line) and the magnetic-energy dissipation rate
εb (red full line), with the arguments scaled by their standard deviations, for (a.1)
PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0
(R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B),
(h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2) PrM = 0.1 (R2C),
(c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for decaying MHD
turbulence; and for statistically steady MHD turbulence (a.3) PrM = 0.01 (R1D),
(b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3) PrM = 10.0 (R4D).

in figures 20(a.1)–(e.1), runs R3B–R5B in figures 20(f.1)–(h.1) and runs R1C–R4C in
figures 20(a.2)–(d.2) for decaying MHD turbulence; and for statistically steady MHD turbulence
they are shown in figures 20(a.3)–(d.3) for runs R1D–R4D. All of these PDFs have long tails;
the tail of the PDF for εb extends further than the tail of that for εu for all except the smallest
values of PrM (figures 20(a.1), (a.2) and (a.3) for runs R1, R1C and R1D, respectively). This
indicates that large values of εb are more likely to appear than large values of εu and, given
the long tails of these PDFs, suggests that, except at the smallest values of PrM we have used,
we might obtain more marked intermittency for the magnetic field than for the velocity field.
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Table 3. The mean µεu , standard deviation σεu , skewness γ3,εu and kurtosis γ4,εu

of the PDFs of the local fluid energy dissipation εu , and their analogues for εb,
for runs R1–R5, R3B–R5B, R1C–R4C and R1D–R4D.

Run µεu σεu γ3,εu γ4,εu µεb σεb γ3,εb γ4,εb

R1 0.0048 0.0096 6.382 75.069 0.0302 0.0550 7.611 144.86
R2 0.0109 0.0187 6.053 70.566 0.0255 0.0527 8.182 121.47
R3 0.0141 0.0226 5.450 52.884 0.0233 0.0566 10.46 204.37
R4 0.0231 0.0284 4.042 28.306 0.0160 0.0397 7.955 97.662
R5 0.0273 0.0302 3.684 24.559 0.0130 0.0315 6.682 64.206
R3B 0.4165 0.7345 5.941 70.070 0.6440 1.5881 9.029 147.71
R4B 6.7843 10.898 5.343 55.676 4.4541 13.377 9.672 155.71
R5B 21.164 32.438 5.353 59.163 9.8332 31.177 9.621 151.64
R1C 0.0031 0.0076 18.45 1620.0 0.0566 0.0632 3.340 22.270
R2C 0.2354 0.5177 7.599 112.92 1.5655 3.5169 13.99 981.17
R3C 0.8349 1.6375 6.841 105.85 1.3186 3.5524 10.41 205.54
R4C 14.208 22.900 5.535 66.496 7.1624 24.974 13.33 406.21
R1D 0.0448 0.0630 5.799 89.678 0.8087 1.1004 4.587 40.328
R2D 0.0601 0.0933 5.180 51.311 0.4995 0.9808 8.488 142.97
R3D 0.2886 0.4233 5.230 55.366 0.6389 1.3120 6.755 80.154
R4D 0.4498 0.5536 5.055 58.832 0.5037 1.1391 8.077 129.65

Furthermore, as we expect, the tail of the PDF of εu is drawn in towards small values of εu as
we increase PrM (figures 20(a.1)–(e.1) for runs R1–R5, respectively) while holding η and the
initial energy fixed. However, if we compensate for the increase in ν by increasing the initial
energy so that kmaxη

u
d and kmaxη

b
d are both '1, we see that the tails of the PDFs of εb and εu get

elongated as we increase PrM, e.g. in figures 20(f.1)–(h.1) for runs R3B–R5B, respectively. The
values of the mean µεu , standard deviation σεu , skewness γ3,εu and kurtosis γ4,εu of the PDFs of
the local fluid energy dissipation εu are given for all our runs, and their counterparts for εb are
given in table 3. From these values, we see that the right tails of these distributions fall much
more slowly than the tail of a Gaussian distribution.

Similar trends emerge if we examine the PDFs of the moduli of the vorticity and the current
density, ω (blue dashed lines) and j (red full lines), respectively: these are presented at tc for runs
R1–R5 in figures 21(a.1)–(e.1), runs R3B–R5B in figures 21(f.1)–(h.1) and runs R1C–R4C in
figures 21(a.2)–(d.2) for decaying MHD turbulence; and for statistically steady MHD turbulence
they are shown in figures 21(a.3)–(d.3) for runs R1D–R4D. The tail of the PDF for j extends
further than the tail of that for εu for all except the smallest values of PrM (figures 21(a.1), (a.2)
and (a.3) for runs R1, R1C and R1D, respectively), so large values of j are more likely than
large values of ω. Thus, given that these PDFs have long tails, it is reasonable to expect that,
except at the smallest values of PrM we have used, intermittency for the magnetic field might
be larger than that for the velocity field. Moreover, the tail of the PDF of ω is drawn in towards
small values of ω as we increase PrM (figures 21(a.1)–(e.1) for runs R1–R5, respectively) while
holding η and the initial energy fixed; but if, while increasing ν, we also increase the initial
energy so that kmaxη

u
d and kmaxη

b
d are '1, we see that the tails of the PDFs of j and ω get

stretched out as we increase PrM, e.g. in figures 21(f.1)–(h.1) for runs R3B–R5B, respectively.
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Figure 21. Semilog (base 10) plots of PDFs of the moduli of the local vorticity
(blue dashed lines) and the current density (red full lines), ω and j , respectively,
with the arguments of the PDFs scaled by their standard deviations, for
(a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM =

5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0
(R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2) PrM = 0.1
(R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for decaying MHD
turbulence; and for statistically steady MHD turbulence (a.3) PrM = 0.01 (R1D),
(b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D), and (d.3) PrM = 10.0 (R4D).

The values of the mean µω, standard deviation σω, skewness γ3,ω and kurtosis γ4,ω of the PDFs
of the modulus of the local vorticity ω for all of our runs and their counterparts for j are given
in table 4. From these values, we see that the right tails of these distributions fall much more
slowly than the tail of a Gaussian distribution.

We move now to PDFs of the local effective pressure (green full lines), which are shown
at tc for runs R1–R5 in figures 22(a.1)–(e.1) and runs R3B–R5B in figures 22(f.1)–(h.1)
for decaying MHD turbulence; for statistically steady MHD turbulence, they are shown in
figures 22(a.2)–(d.2) for runs R1D–R4D. The values of the mean µp, standard deviation σp,
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Table 4. The mean µω, standard deviation σω, skewness γ3,ω and kurtosis γ4,ω of
the PDFs of the modulus of the local vorticity ω, and their analogues for j , for
runs R1–R5, R3B–R5B, R1C–R4C and R1D–R4D.

Run µω σω γ3,ω γ4,ω µ j σ j γ3, j γ4, j

R1 3.817 3.138 2.174 10.25 3.109 2.340 2.206 11.42
R2 2.680 1.938 1.961 9.235 2.794 2.222 2.525 13.84
R3 2.189 1.512 1.871 8.598 2.606 2.215 2.873 17.16
R4 1.312 0.766 1.534 6.859 2.121 1.870 2.903 15.74
R5 1.022 0.567 1.363 6.098 1.906 1.695 2.789 13.95
R3B 11.50 8.706 1.949 8.908 13.27 12.06 2.791 15.61
R4B 21.30 14.98 1.828 8.246 32.58 34.11 3.243 19.05
R5B 26.93 18.23 1.770 8.049 47.08 51.90 3.360 19.79
R1C 25.31 23.10 2.265 11.17 21.00 18.47 2.456 14.56
R2C 15.70 13.07 2.062 9.831 18.35 17.95 2.899 17.01
R3C 21.68 15.49 1.746 7.910 38.85 45.50 3.563 23.00
R4C 2.945 2.661 3.027 26.37 1.446 0.861 1.451 6.816
R1D 12.14 8.700 2.297 14.16 5.336 3.456 1.702 7.683
R2D 14.26 9.802 1.745 7.821 12.58 9.544 2.336 12.64
R3D 10.07 6.544 1.644 7.463 13.88 11.24 2.320 11.36
R4D 4.119 2.349 1.388 6.526 11.92 10.47 2.429 12.46

skewness γ3,p and kurtosis γ4,p of the PDFs of the local effective pressure p are given for these
runs in table 5. These have mean µp = 0 but are distinctly non-Gaussian as can be seen from
the values of γ3,p and γ4,p. Pressure PDFs are negatively skewed in pure fluid turbulence, as we
have mentioned above; however, for MHD turbulence, we find that the PDFs of the effective
pressure p̄ can be positively skewed, as in runs R1–R5, R3B–R5B and run R4D, or negatively
skewed, as in runs R1D–R3D; negative skewness seems to arise at low values of PrM.

The scale dependence of PDFs of velocity increments provides important clues to
the nature of intermittency in fluid turbulence. To explore similar intermittency in MHD
turbulence [73], we present data for the scale dependence of PDFs of velocity and magnetic-
field increments. As mentioned above, these increments are of the form δa‖(x, l) ≡ a(x + l, t) −

a(x, t)] ·
l
l , with a being either u or b, l = |l| the length scale and x an origin over which we

can average to determine the dependence of the PDFs of δa‖ on the scale l; for notational
convenience, such velocity and magnetic-field increments are denoted by δu(l) and δb(l) in our
plots. These PDFs are obtained at tc for runs R1–R5 in figures 23(a.1)–(e.1), runs R3B–R5B in
figures 23(f.1)–(h.1) and runs R1C–R4C in figures 23(a.2)–(d.2) for decaying MHD turbulence;
and for statistically steady MHD turbulence, they are shown in figures 23(a.3)–(d.3) for runs
R1D–R4D. The PDFs of velocity increments are shown for separations l = 2δx (red dashed
thin line), l = 10δx (green dot-dashed thin line) and l = 100δx (blue full thin line), where δx is
our real-space lattice spacing; for PDFs of magnetic-field increments we also use the separations
l = 2δx (black dashed line), l = 10δx (cyan dot-dashed line) and l = 100δx (magenta full line);
the arguments of these PDFs are scaled by their standard deviations. As in fluid turbulence, we
see that these PDFs are nearly Gaussian if the length scale l is large. As l decreases, the PDFs
develop long, non-Gaussian tails, a clear signature of intermittency. Furthermore, a comparison
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Figure 22. Semilog (base 10) plots of PDFs of local effective pressure
fluctuations (green full lines), with the arguments of the PDFs scaled by their
standard deviations, for (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1)
PrM = 1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0
(R3B), (g.1) Pr M = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), for decaying MHD
turbulence; and for statistically steady MHD turbulence (a.2) PrM = 0.01 (R1D),
(b.2) PrM = 0.1 (R2D), (c.2) PrM = 1.0 (R3D) and (d.2) PrM = 10.0 (R4D).

of the red and black dashed lines in these plots indicates that the PDFs of the magnetic-field
increments are broader than their velocity counterparts in most of our runs; this suggests, as
we had surmised from the PDFs of energy-dissipation rates given above, that the magnetic field
displays stronger intermittency than the velocity field at all but the smallest values of PrM

(figures 23(a.1), (a.2) and (a.3) for runs R1, R1C and R1D); the general trend that we note from
these figures is that the magnetic-field intermittency is stronger than that of the velocity field at
large magnetic Prandtl numbers but the difference between these intermittencies decreases as
PrM is lowered. We will try to quantify this when we present structure functions in section 3.5.

3.5. Structure functions

We continue our elucidation of intermittency in MHD turbulence by studying the scale
dependence of order-p equal-time, velocity and magnetic-field longitudinal structure functions
Su

p(l) ≡ 〈|δu‖(x, l)|p
〉 and magnetic-field longitudinal structure functions Sb

p(l) ≡ 〈|δb‖(x, l)|p
〉,

respectively, where δu‖(x, l) ≡ [u(x + l, t) − u(x, t)] ·
l
l and δb‖(x, l) ≡ [b(x + l, t) − b(x, t)] ·

l
l .

From these structure functions, we also obtain the hyperflatnesses Fu
6 (r) = Su

6 (r)/[Su
2(r)]3

and Fb
6 (r) = Sb

6 (r)/[Sb
2(r)]3. For the inertial range ηu

d, η
b
d � l � L , we expect Su

p(l) ∼ lζ p
u
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Table 5. The mean µp, standard deviation σp, skewness γ3,p and kurtosis γ4,p

of the PDFs of the local effective pressure p̄ for runs R1–R5, R3B–R5B and
R1D–R4D.

Run µp σp γ3,p γ4,p

R1 0.00 0.055 0.224 4.152
R2 0.00 0.057 0.256 4.052
R3 0.00 0.061 0.315 3.722
R4 0.00 0.060 0.397 3.493
R5 0.00 0.059 0.433 3.527
R3B 0.00 0.609 0.526 5.283
R4B 0.00 3.184 0.660 5.645
R5B 0.00 6.397 0.719 5.776
R1D 0.00 0.738 −0.533 3.882
R2D 0.00 0.313 −0.153 4.697
R3D 0.00 0.589 −1.066 5.338
R4D 0.00 0.363 0.221 5.560

and Sb
p(l) ∼ lζ p

b
, where ζ u

p and ζ b
p are inertial-range multiscaling exponents for velocity

and magnetic fields, respectively; if these fields show multiscaling, we expect significant
deviations from the K41 result ζ uK 41

p = ζ bK 41
p = p/3. (Note that we do not expect any

Iroshnikov–Kraichnan [74] scaling because we have no mean magnetic field in our simulations.)
Given large inertial ranges, the multiscaling exponents can be extracted from slopes of log–log
plots of structure functions versus l. However, in practical calculations, inertial ranges are
limited, so we use the ESS procedure [40, 41] in which we determine the multiscaling exponent
ratios ζ u

p /ζ u
3 and ζ b

p/ζ
b
3 , respectively, from slopes of log–log plots of (a) Su

p versus Su
3 and (b)

Sb
p versus Sb

3 ; we refer to these as ESS plots. Our data for structure functions are averaged over
51 and 400 origins, respectively, for simulations with 5123 and 10243 collocation points.

We begin with data from our decaying-MHD-turbulence runs R1C–R4C, which use
10243 collocation points and span the PrM range 0.01–10. Figures 24(a.1)–(d.1) show ESS
plots for Su

p(r) for runs R1C–R4C, respectively, for p = 1 (red small-dotted line), p = 2
(green dot-dashed line), p = 3 (blue line), p = 4 (black thin-dashed line), p = 5 (cyan thick-
dashed line) and p = 6 (magenta large-dotted line); their analogues for Sb

p(r) are given in
figures 24(a.2)–(d.2); the local slopes of these ESS curves are shown in the insets of these
figures. Flat portions in these plots of local slopes help us to identify the inertial ranges. The
regions that we have chosen for our fits are indicated by black horizontal lines with vertical ticks
at their ends. In such a region, the mean value and the standard deviation of the local slope of the
ESS plot for Su

p(r) (or Sb
p(r)) yield, respectively, our estimates for the exponent ratio ζ u

p /ζ u
3 (or

ζ b
p/ζ

b
3 ) and its error bars. Figures 24(a.3)–(d.3) show plots of these exponent ratios versus p for

the velocity field (blue dotted line with thick error bars) and the magnetic field (red dashed line
with thin error bars); the black solid line shows the K41 result for comparison. Although earlier
studies [25, 39] have obtained such exponents from DNS studies, they have done so, to the best
of our knowledge, only for PrM = 1; furthermore, they have not reported error bars. Although
our (conservative) error bars are large, our plots of exponent ratios suggest the following:
(a) deviations from the K41 result are significant, especially for p > 3, as in fluid turbulence;
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Figure 23. Semilog (base 10) plots of PDFs of velocity increments δu(l), for
separations l = 2δx (red dashed thin line), 10δx (green dot-dashed thin line)
and 100δx (blue full thin line), and of magnetic-field increments δb(l), for
separations l = 2δx (black dashed line), 10δx (cyan dot-dashed line) and 100δx
(magenta full line), with the arguments of the PDFs scaled by their standard
deviations, for (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0
(R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C),
(b.2) PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C)
for decaying MHD turbulence; and for statistically steady MHD turbulence (a.3)
PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3)
PrM = 10.0 (R4D).

(b) at large values of PrM the magnetic field is more intermittent than the velocity field, insofar
as the deviations of ζ b

p/ζ
b
3 from the K41 result p/3 are larger than those of ζ u

p /ζ u
3 ; (c) as we

reduce PrM this difference in intermittency reduces until, at PrM = 0.01, the velocity field
shows signs of becoming more intermittent than the magnetic field. This trend in intermittency

is corroborated by plots versus l of the hyperflatnesses Fu
6 (l) =

Su
6 (l)

Su
2 (l)3 (red line) and Fb

6 (l) =
Sb

6 (l)

Sb
2 (l)3
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Figure 24. Log–log (base 10) ESS plots of order-p structure functions of the
velocity Su

p(l) ((a.1)–(d.1)) and magnetic-field Sb
p(l) ((a.2)–(d.2)) versus Su

3 (l)
and Sb

3 (l), respectively; plots of the local slopes of these curves are shown in
the inset. The black horizontal lines, with vertical ticks at their ends, show the
inertial range over which we have averaged the exponent ratios ζ u

p /ζ u
p and ζ u

p /ζ u
p ;

plots are shown for p = 1 (red small-dotted line), p = 2 (green dot-dashed line),
p = 3 (blue line), p = 4 (black thin-dashed line), p = 5 (cyan thick-dashed line)
and p = 6 (magenta large-dotted line). Subplots (a.3)–(d.3) show the exponent
ratios ζp/ζ3 versus p for the velocity (red dashed line with thin error bars) and
magnetic fields (blue dotted line with thick error bars); the black solid line shows
the K41 result ζ K 41

p = p/3. The semilog (base 10) plots (a.4)–(d.4) show the
hyperflatnesses Fu

6 (l) (red line) and Fb
6 (l) (blue dashed line) versus l. Subplots

in panels (a), (b), (c), and (d) are from our decaying-turbulence runs R1C, R2C,
R3C and R4C, respectively, with PrM = 0.01, 0.1, 1 and 10.

(blue dashed line) in figures 24(a.4)–(d.4) for runs R1C–R4C, respectively: As l decreases,
Fb

6 (l) rises more rapidly than Fu
6 (l) except at PrM = 0.01.

Similar results follow from our studies of statistically steady MHD turbulence in
runs R1D–R4D, which use 5123 collocation points and span the PrM range 0.01–10.
Figures 25(a.1)–(d.1) show ESS plots for Su

p(r) for runs R1D–R4D, respectively, for p = 1 (red
small-dotted line), p = 2 (green dot-dashed line), p = 3 (blue line), p = 4 (black thin-dashed
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Figure 25. Log–log (base 10) ESS plots of order-p structure functions of the
velocity Su

p(l) ((a.1)–(d.1)) and magnetic field Sb
p(l) ((a.2)–(d.2)) versus Su

3 (l)
and Sb

3 (l), respectively; plots of the local slopes of these curves are shown in
the inset. The black horizontal lines, with vertical ticks at their ends, show the
inertial range over which we have averaged the exponent ratios ζ u

p /ζ u
p and ζ u

p /ζ u
p ;

plots are shown for p = 1 (red small-dotted line), p = 2 (green dot-dashed line),
p = 3 (blue line) p = 4 (black thin-dashed line), p = 5 (cyan thick-dashed line),
and p = 6 (magenta large-dotted line). Subplots (a.3)–(d.3) show the exponent
ratios ζp/ζ3 versus p for the velocity (red dashed line with thin error bars) and
magnetic fields (blue dotted line with thick error bars); the black solid line shows
the K41 result ζ K 41

p = p/3. The semilog (base 10) plots (a.4)–(d.4) show the
hyperflatnesses Fu

6 (l) (red line) and Fb
6 (l) (blue dashed line) versus l. Subplots

in panels (a), (b), (c) and (d) are from our statistically steady MHD-turbulence
runs R1D, R2D, R3D and R4D, respectively, with PrM = 0.01, 0.1, 1 and 10.

line), p = 5 (cyan thick-dashed line) and p = 6 (magenta large-dotted line); their analogues for
Sb

p(r) are given in figures 25(a.2)–(d.2); the local slopes of these ESS curves are shown in the
insets of these figures. We obtain estimates for the exponent ratio ζ u

p /ζ u
3 and ζ b

p/ζ
b
3 and their

error bars, as in figure 24. Figures 25(a.3)–(d.3) show plots of these exponent ratios versus
p for the velocity field (blue dotted line with thick error bars) and the magnetic field (red
dashed line with thin error bars); the black solid line shows the K41 result for comparison.
Plots versus l of the hyperflatnesses Fu

6 (l) (red line) and Fb
6 (l) (blue dashed line) are presented
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Table 6. Multiscaling exponent ratios ζ u
p /ζ u

3 and ζ b
p/ζ

b
3 from our decaying-MHD-

turbulence runs R1C–R4C.

p ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 0.01) ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 0.1)

1 0.41 ± 0.04; 0.35 ± 0.01 0.39 ± 0.09; 0.42 ± 0.04
2 0.74 ± 0.04; 0.68 ± 0.01 0.71 ± 0.08; 0.74 ± 0.03
3 1.00 ± 0.00; 1.00 ± 0.00 1.00 ± 0.00; 1.00 ± 0.00
4 1.21 ± 0.09; 1.29 ± 0.03 1.26 ± 0.14; 1.20 ± 0.03
5 1.38 ± 0.22; 1.56 ± 0.06 1.51 ± 0.32; 1.37 ± 0.07
6 1.52 ± 0.41; 1.80 ± 0.10 1.76 ± 0.53; 1.52 ± 0.13

p ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 1) ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 10)

1 0.42 ± 0.03; 0.49 ± 0.04 0.40 ± 0.06; 0.50 ± 0.05
2 0.74 ± 0.03; 0.80 ± 0.04 0.72 ± 0.05; 0.81 ± 0.04
3 1.00 ± 0.00; 1.00 ± 0.00 1.00 ± 0.00; 1.00 ± 0.00
4 1.25 ± 0.06; 1.15 ± 0.07 1.27 ± 0.08; 1.15 ± 0.05
5 1.50 ± 0.16; 1.27 ± 0.18 1.55 ± 0.18; 1.29 ± 0.12
6 1.74 ± 0.30; 1.38 ± 0.32 1.83 ± 0.31; 1.45 ± 0.23

Table 7. Multiscaling exponent ratios ζ u
p /ζ u

3 and ζ b
p/ζ

b
3 from our statistically

steady MHD-turbulence runs R1D–R4D.

p ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 0.01) ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 0.1)

1 0.38 ± 0.04; 0.37 ± 0.01 0.42 ± 0.03; 0.52 ± 0.11
2 0.72 ± 0.04; 0.70 ± 0.01 0.74 ± 0.02; 0.83 ± 0.09
3 1.00 ± 0.00; 1.00 ± 0.00 1.00 ± 0.00; 1.00 ± 0.00
4 1.23 ± 0.08; 1.26 ± 0.03 1.20 ± 0.04; 1.12 ± 0.12
5 1.41 ± 0.19; 1.50 ± 0.07 1.36 ± 0.11; 1.24 ± 0.28
6 1.55 ± 0.33; 1.72 ± 0.12 1.49 ± 0.20; 1.39 ± 0.54

p ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 1) ζ u
p /ζ u

3 ; ζ b
p/ζ b

3 (PrM = 10)

1 0.39 ± 0.04; 0.47 ± 0.02 0.37 ± 0.02; 0.51 ± 0.06
2 0.73 ± 0.04; 0.79 ± 0.01 0.71 ± 0.02; 0.82 ± 0.06
3 1.00 ± 0.00; 1.00 ± 0.00 1.00 ± 0.00; 1.00 ± 0.00
4 1.20 ± 0.10; 1.13 ± 0.02 1.25 ± 0.05; 1.11 ± 0.08
5 1.36 ± 0.30; 1.24 ± 0.06 1.47 ± 0.13; 1.18 ± 0.16
6 1.46 ± 0.52; 1.33 ± 0.12 1.65 ± 0.26; 1.25 ± 0.24

in figures 25(a.4)–(d.4) for runs R1D–R4D, respectively. All of the trends here are exactly as in
the decaying-MHD-turbulence plots in figure 24.

Tables 6 and 7 summarize, respectively, our results for multiscaling exponent ratios for our
decaying-MHD-turbulence runs R1C–R4C and our statistically steady MHD-turbulence runs
R1D–R4D. The trends of these ratios with PrM have been discussed above. By comparing
corresponding entries in the columns and rows of these tables, we see that exponent ratios
from decaying and statistically steady MHD turbulence agree, given our (conservative) error
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bars. Thus, at least at this level of resolution and accuracy, we have strong universality of
these exponent ratios, for a given value of PrM, in as much as the ratios from decaying-MHD
turbulence agree with those from the statistically steady case. The dependence on PrM will be
examined in section 4. We have tried to fit our data for the multiscaling exponent ratios to the
generalized She–Leveque formula used in [25, 75] to extract the codimensions of dissipative
structures; these fits are not very good; they yield values for these codimensions that are close
to or slightly lower than 1 and are closer to the estimates of [25] than those of [75]. (See [75] for
a discussion of possible reasons for the discrepancies between these estimates.) Given the large
error bars in multiscaling exponent ratios, we suggest that such fits are fraught with considerable
uncertainty.

3.6. Isosurfaces

As we have mentioned in our discussion of fluid turbulence, isosurface plots of quantities such
as ω, the modulus of the vorticity, give us a visual appreciation of small-scale structures in
a turbulent flow; in fluid turbulence, iso-ω surfaces are slender tubes if ω is chosen to be
well above its mean value [66, 72]. For the case of MHD turbulence, it is natural to consider
isosurface plots [76] of ω, the modulus j of the current density, energy dissipation rates and the
effective pressure.

Isosurfaces of ω are shown at tc for runs R1–R5 in figures 26(a.1)–(e.1), runs R3B–R5B in
figures 26(f.1)–(h.1) and runs R1C–R4C in figures 26(a.2)–(d.2) for decaying MHD turbulence;
and for statistically steady MHD turbulence they are shown in figures 26(a.3)–(d.3) for runs
R1D–R4D; these isosurfaces go through points at which the value of ω is two standard
deviations above its mean value (for any given plot). For PrM = 1, it has been noted in several
DNS studies that such isosurfaces are sheets [5, 25, 76, 77] and that there is a general tendency
for such sheet formation in MHD turbulence; our results show that this tendency persists
even when PrM 6= 1. The number of high-intensity isosurfaces of ω shrinks as we increase
PrM (figures 26(a.1)–(e.1) for runs R1–R5, respectively), by increasing ν while holding the
initial energy fixed. However, if we compensate for the increase in ν by increasing the energy
in the initial condition such that kmaxη

u
d and kmaxη

b
d are both '1, we see that high-ω sheets

reappear (figures 26(f.1)–(h.1) for runs R3B–R5B, respectively). These trends are also visible
in our high-resolution, decaying-MHD-turbulence runs R1C–R4C (figures 26(a.2)–(d.2)) and
the statistically steady ones, namely R1D–R4D (figures 26(a.3)–(d.3)). One interesting point
that has not been noted before is that some tube-type structures appear along with the sheets at
small values of PrM, as can be seen by enlarging figure 26(a.3) for run R1D.

Similar features and trends appear in isosurfaces of j that are shown at tc for runs
R1–R5 in figures 27(a.1)–(e.1), runs R3B–R5B in figures 27(f.1)–(h.1) and runs R1C–R4C in
figures 27(a.2)–(d.2) for decaying MHD turbulence; and for statistically steady MHD turbulence
they are shown in figures 27(a.3)–(d.3) for runs R1D–R4D; these isosurfaces go through points
at which the value of j is two standard deviations above its mean value (for any given plot).
Again, the dominant features in these isosurface plots are sheets; their number goes down as
PrM increases with ν while the initial energy is held constant; but if this energy is increased,
the number of high-intensity sheets increases.

Isosurfaces of εu are shown at tc for runs R1–R5 in figures 28(a.1)–(e.1), runs R3B–R5B in
figures 28(f.1)–(h.1) and runs R1C–R4C in figures 28(a.2)–(d.2) for decaying MHD turbulence;
and for statistically steady MHD turbulence they are shown in figures 28(a.3)–(d.3) for runs
R1D–R4D; the isosurfaces go through points at which the value of εu is two standard deviations
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Figure 26. Isosurfaces of the modulus ω of the vorticity: (a.1) PrM = 0.1 (R1),
(b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM =

10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0
(R5B), (a.2) PrM = 0.01 (R1C), (b.2) PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C)
and (d.2) PrM = 10.0 (R4C) for decaying MHD turbulence; and for statistically
steady MHD turbulence (a.3) PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D),
(c.3) PrM = 1.0 (R3D) and (d.3) PrM = 10.0 (R4D); these isosurfaces go
through points at which the value of ω is two standard deviations above its mean
value (for any given plot).

above its mean value (for any given plot). Similar isosurfaces of εb are shown at tc for runs
R1–R5 in figures 29(a.1)–(e.1), runs R3B–R5B in figures 29(f.1)–(h.1) and runs R1C–R4C in
figures 29(a.2)–(d.2) for decaying MHD turbulence; and for statistically steady MHD turbulence
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Figure 27. Isosurfaces of the modulus j of the current density: (a.1) PrM = 0.1
(R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1)
PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B), (h.1) PrM =

10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2) PrM = 0.1 (R2C), (c.2) PrM = 1.0
(R3C) and (d.2) PrM = 10.0 (R4C) for decaying MHD turbulence; and for
statistically steady MHD turbulence (a.3) PrM = 0.01 (R1D), (b.3) PrM = 0.1
(R2D), (c.3) PrM = 1.0 (R3D) and (d.3) PrM = 10.0 (R4D); these isosurfaces
go through points at which the value of j is two standard deviations above its
mean value (for any given plot).

they are shown in figures 29(a.3)–(d.3) for runs R1D–R4D; the isosurfaces go through points
at which the value of εb is two standard deviations above its mean value (for any given plot).
Here too, the isosurfaces are sheets; they lie close to, but are not coincident with, isosurfaces of
ω and j ; changes in PrM affect these isosurfaces much as they affect isosurfaces of ω and j .
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Figure 28. Isosurfaces of the local fluid energy dissipation rate εu: (a.1) PrM =

0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0 (R4),
(e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B), (h.1)
PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2) PrM = 0.1 (R2C), (c.2)
PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for decaying MHD turbulence;
and for statistically steady MHD turbulence (a.3) PrM = 0.01 (R1D), (b.3)
PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3) PrM = 10.0 (R4D); these
isosurfaces go through points at which the value of εu is two standard deviations
above its mean value (for any given plot).

Isosurfaces of p̄ are shown at tc for runs R1–R5 in figures 30(a.1)–(e.1) and runs
R3B–R5B in figures 30(f.1)–(h.1) for decaying MHD turbulence; and for statistically steady
MHD turbulence they are shown in figures 30(a.3)–(d.3) for runs R1D–R4D; the isosurfaces
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Figure 29. Isosurfaces of the local magnetic-energy dissipation rate εb: (a.1)
PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0
(R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B) and
(h.1) PrM = 10.0 (R5B). (a.2) PrM = 0.01 (R1C), (b.2) PrM = 0.1 (R2C), (c.2)
PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for decaying MHD turbulence;
and for statistically steady MHD turbulence (a.3) PrM = 0.01 (R1D), (b.3)
PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3) PrM = 10.0 (R4D); these
isosurfaces go through points at which the value of εb is two standard deviations
above its mean value (for any given plot).

go through points at which the value of p̄ is two standard deviations above its mean value (for
any given plot). The general form of these isosurfaces is cloud-type, to borrow the term that
has been used for isosurfaces of the pressure in fluid turbulence [61]. Here also changes in PrM
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Figure 30. Isosurfaces of the local effective pressure p̄: (a.1) PrM = 0.1 (R1),
(b.1) PrM = 0.5 (R2), (c.1) PrM = 1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM =

10.0 (R5), (f.1) PrM = 1.0 (R3B), (g.1) PrM = 5.0 (R4B) and (h.1) PrM =

10.0 (R5B) for decaying MHD turbulence; and for statistically steady MHD
turbulencs (a.2) PrM = 0.01 (R1D), (b.2) PrM = 0.1 (R2D), (c.2) PrM = 1.0
(R3D) and (d.2) PrM = 10.0 (R4D); these isosurfaces go through points at which
the value of p̄ is two standard deviations above its mean value (for any given
plot).

affect these isosurfaces much as they affect isosurfaces of ω and j , in as much as high-intensity
isosurfaces are suppressed as PrM increases via an increase in ν, unless this is compensated for
by an increase in the initial energy (in the case of decaying MHD turbulence) or Reλ.

3.7. Joint probability distribution functions (PDFs)

In this subsection, we present three sets of joint PDFs that have, to the best of our knowledge,
not been used to characterize MHD turbulence previously. The first of these is a Q R plot that is
often used in studies of fluid turbulence, as we have discussed in sections 2.2 and 3.1; the next
is a joint PDF of ω and j ; and the last is a joint PDF of εu and εb.

We show Q R plots, i.e. joint PDFs of Q and R, via filled contour plots; these are obtained
at tc for runs R1–R5 in figures 31(a.1)–(e.1), runs R3B–R5B in figures 31(f.1)–(h.1) and runs
R1C–R4C in figures 31(a.2)–(d.2) for decaying MHD turbulence; and for statistically steady
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Figure 31. Q R plots, i.e. joint PDFs of Q and R, shown as filled contour plots on
a logarithmic scale for (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM =

1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C),
(b.2) PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C)
for decaying MHD turbulence; and for statistically steady MHD turbulence (a.3)
PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3)
PrM = 10.0 (R4D). The arguments Q and R of the Q R plots are normalised
by 〈ω2

〉 and 〈ω2
〉

3/2, respectively. The black curve is the zero-discriminant line
D ≡

27
4 R2 + Q3

= 0.

MHD turbulence they are shown in figures 31(a.3)–(d.3) for runs R1D–R4D; the black curve
in these plots is the zero-discriminant line D ≡

27
4 R2 + Q3

= 0. These Q R plots retain overall,
aside from some distortions, the characteristic tear-drop structure familiar from fluid turbulence
(see section 3.1 and figure 5). If we recall our discussion of Q R plots in section 2.2 and we note
that, as we increase PrM (figures 31(a.1)–(e.1) for runs R1–R5, respectively) while holding η

and the initial energy fixed, there is a general decrease in the probability of having large values
of Q and R, i.e. regions of large strain or vorticity are suppressed; this corroborates what we
have found from the PDFs and isosurfaces discussed above. However, if we compensate for
the increase in ν by increasing the initial energy, or Reλ, so that kmaxη

u
d and kmaxη

b
d are both

'1, we see that Q and R can increase again. Note that when PrM is very small, as in run

New Journal of Physics 13 (2011) 013036 (http://www.njp.org/)

http://www.njp.org/


42

j

ω

5 10 15

2

4

6

8

10

12

0

2

4

(a.1)

j

ω

2 4 6 8 10 12

2

4

6

8

10

0

2

4

(b.1)

j

ω

2 4 6 8 10 12 14

2

4

6

0

2

4

(c.1)

j

ω

2 4 6 8 10

1

2

3

4

5

0

1

2

3

4

5
(d.1)

j

ω

2 4 6 8

1

2

3

4

0

1

2

3

4

5
(e.1)

j

ω

5 10 15

2

4

6

8

10

0

2

4

(f.1)

j

ω

5 10 15

2

4

6

8

10

12

0

2

4

(g.1)

j

ω

5 10 15 20

2

4

6

8

10

0

2

4

6
(h.1)

j

ω

2 4 6 8 10 12

20

40

60

0

2

4

6
(a.2)

j

ω

10 20 30

5

10

15

0

2

4

6
(b.2)

j

ω

5 10 15

5

10

15

20

0

2

4

6
(c.2)

j

ω

10 20 30

2

4

6

8

10

0

2

4

6
(d.2)

j

ω

2 4 6 8 10

5

10

15

20

25

0

2

4

(a.3)

j

ω

2 4 6 8 10 12 14

2

4

6

8

10

0

2

4

(b.3)

j

ω

2 4 6 8 10 12

2

4

6

8

0

2

4

(c.3)

j
ω

2 4 6 8 10 12

2

4

6

0

2

4

(d.3)

Figure 32. Joint PDFs of ω and j shown as filled contour plots on a
logarithmic scale for (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM =

1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2)
PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for
decaying MHD turbulence; and for statistically steady MHD turbulence (a.3)
PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3)
PrM = 10.0 (R4D). The arguments of the joint PDFs are normalized by their
standard deviations.

R1D (figure 31(a.3)), the tear-drop structure is very much like its fluid–turbulence counterpart
figure 5, which might well correlate with the appearance of some tube-type structures in the ω

isosurface in enlarged versions of figure 26(a.3).
We now consider joint PDFs of ω and j that are obtained at tc for runs R1–R5

in figures 32(a.1)–(e.1), runs R3B–R5B in figures 32(f.1)–(h.1) and runs R1C–R4C in
figures 32(a.2)–(d.2) for decaying MHD turbulence; and for statistically steady MHD turbulence
they are shown in figures 32(a.3)–(d.3) for runs R1D–R4D. All of these joint PDFs have long
tails; as we move away from PrM = 1, they become more and more asymmetrical. Furthermore,
as we expect, the tails of these PDFs are drawn in towards small values of ω and j as we increase
PrM (figures 32(a.1)–(e.1) for runs R1–R5, respectively) while holding η and the initial energy
fixed. However, if we compensate for the increase in ν by increasing the initial energy or Reλ,
so that kmaxη

u
d and kmaxη

b
d are both '1, we see that the tails of the PDFs become elongated again.
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Figure 33. Joint PDFs of εu and εb shown as filled contour plots on a
logarithmic scale for (a.1) PrM = 0.1 (R1), (b.1) PrM = 0.5 (R2), (c.1) PrM =

1.0 (R3), (d.1) PrM = 5.0 (R4), (e.1) PrM = 10.0 (R5), (f.1) PrM = 1.0 (R3B),
(g.1) PrM = 5.0 (R4B), (h.1) PrM = 10.0 (R5B), (a.2) PrM = 0.01 (R1C), (b.2)
PrM = 0.1 (R2C), (c.2) PrM = 1.0 (R3C) and (d.2) PrM = 10.0 (R4C) for
decaying MHD turbulence; and for statistically steady MHD turbulence (a.3)
PrM = 0.01 (R1D), (b.3) PrM = 0.1 (R2D), (c.3) PrM = 1.0 (R3D) and (d.3)
PrM = 10.0 (R4D). The arguments of the joint PDFs are normalized by their
standard deviations.

In the end, we consider joint PDFs of εu and εb that are obtained at t c for runs
R1–R5 in figures 33(a.1)–(e.1), runs R3B–R5B in figures 33(f.1)–(h.1) and runs R1C–R4C in
figures 33(a.2)–(d.2) for decaying MHD turbulence; and for statistically steady MHD turbulence
they are shown in figures 33(a.3)–(d.3) for runs R1D–R4D. The trends here are similar to the
ones discussed in the previous paragraph. In particular, these joint PDFs have long tails; as we
move away from PrM = 1, they become more and more asymmetrical; and the tails of these
PDFs are drawn in towards small values of εu and εb as we increase PrM (figures 33(a.1)–(e.1)
for runs R1–R5, respectively) while holding η and the initial energy fixed. But if we make up
for the increase in ν by increasing the initial energy or Reλ so that kmaxη

u
d and kmaxη

b
d are both

'1, we see that the tails of the PDFs become elongated again.
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4. Discussions and conclusion

We have carried out an extensive study of the statistical properties of both decaying and
statistically steady homogeneous, isotropic MHD turbulence. Our study, which has been
designed specifically to study the systematics of the dependence of these properties on the
magnetic Prandtl number PrM, uses a large number of statistical measures to characterize the
statistical properties of both decaying and statistically steady MHD turbulence. Our study is
restricted to incompressible MHD turbulence; we do not include a mean magnetic field as, e.g.,
in [33]; furthermore, we do not study Lagrangian properties considered, e.g., in [34]. In our
studies, we obtain (a) various PDFs, such as those of the moduli of the vorticity and current
density, the energy dissipation rates, of cosines of angles between various vectors and scale-
dependent velocity and magnetic-field increments, (b) spectra, e.g. those of the energy and
the effective pressure, (c) velocity and magnetic-field structure functions that can be used to
characterize intermittency, (d) isosurfaces of quantities such as the moduli of the vorticity and
current, and (e) joint PDFs, such as Q R plots. The evolution of these properties with PrM has
been described in detail in the previous section.

To the best of our knowledge, such a comprehensive study of the PrM dependence
of incompressible, homogeneous, isotropic MHD turbulence, both decaying and statistically
steady, has not been attempted before. Studies that draw their inspiration from astrophysics
often consider anisotropic flows [78]–[85], flows that are compressible [35, 86] or flows that
include a mean magnetic field [33, 83, 87, 88]. Yet other studies concentrate on the alignment
between various vectors such as u and b as, e.g., in [28, 35, 53]; some of these include a few,
but not all, of the PDFs we have studied; and, typically, these studies are restricted to the case
PrM = 1. Some of the spectra we study have been obtained in earlier DNS studies but, typically,
only for the case PrM = 1; a notable exception is [38], which examines the PrM dependence of
energy spectra but with a relatively low resolution. The papers [6, 32, 89] have also considered
some PrM dependence but not for low PrM. Isosurfaces of the moduli of vorticity and current
density have been obtained earlier [25, 39, 76] for the case PrM = 1. The PrM dependence of
these and other isosurfaces is presented here for the first time. The joint PDFs we have shown
above have also not been investigated previously.

Here we wish to highlight, and examine in detail, the implications of our study for
intermittency. Some earlier DNS studies, such as [30], noted that, for the case PrM = 1, the
magnetic field is more intermittent than the velocity field. This is why we have concentrated
on velocity and magnetic-field structure functions. Our study confirms this finding, for the case
PrM = 1. This can be clearly seen from the comparison of our exponent ratios, for PrM = 1,
with those of the recent DNS of decaying-MHD turbulence in [30] in table 8; the error bars that
we quote for our exponent ratios have been calculated as described in the previous section; we
have obtained exponent ratios of the paper [30] by digitizing5 the data in their plot (figure 3 of
[30]) of multiscaling exponents versus the order p (error bars are not given in their plot). Thus,
at least given our error bars, there is agreement between our exponent ratios, both for decaying
and statistically steady MHD turbulence, and those of [30] for PrM = 1. We note in passing
that the latter DNS is one of decaying MHD turbulence but with a very special initial condition,
which allows an effective resolution greater than that we have obtained; however, the initial
condition we use in our decaying-MHD-turbulence DNS is more generic than that of [30]. It is

5 For digitizing we use G3DATA software (http://www.frantz.fi/software/g3data.php) available in the Ubuntu
repositories.
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Table 8. A comparison of multiscaling exponent ratios ζ u
p /ζ u

3 and ζ b
p/ζ

b
3 from

our statistically steady and decaying MHD simulations and from decaying MHD
simulations by Mininni and Pouquet ([30]), for PrM = 1.

p ζ u
p [30] ζ u

p /ζ u
3 [30] ζ u

p /ζ u
3 (R3D) ζ u

p /ζ u
3 (R3C)

1 0.30 0.40 0.39 ± 0.04 0.42 ± 0.03
2 0.55 0.74 0.73 ± 0.04 0.74 ± 0.03
3 0.74 1.00 1.00 ± 0.00 1.00 ± 0.00
4 0.91 1.22 1.20 ± 0.10 1.25 ± 0.06
5 1.04 1.39 1.36 ± 0.30 1.50 ± 0.16
6 1.17 1.56 1.46 ± 0.52 1.74 ± 0.30
p ζ b

p [30] ζ b
p/ζ b

3 [30] ζ b
p/ζ b

3 (R3D) ζ b
p/ζ b

3 (R3C)
1 0.36 0.43 0.47 ± 0.02 0.49 ± 0.04
2 0.63 0.76 0.79 ± 0.01 0.80 ± 0.04
3 0.83 1.00 1.00 ± 0.00 1.00 ± 0.00
4 0.97 1.16 1.13 ± 0.02 1.15 ± 0.07
5 1.07 1.28 1.24 ± 0.06 1.27 ± 0.18
6 1.14 1.36 1.33 ± 0.12 1.38 ± 0.32

our expectation that non-universal effects, associated with different initial conditions [26, 50],
might not affect multiscaling exponent ratios, except if we use non-generic, power-law initial
conditions [26] in which E(k) grows with k (at least until some large-k cut-off).

Direct numerical simulations of decaying-MHD turbulence, e.g. those of [25, 30], often
average data obtained from field configurations at different times that are close to the time at
which the peak appears in plots of the energy-dissipation rate. This is a reasonable procedure,
for PrM = 1, because the temporal evolution of the system is slow in the vicinity of this peak.
We have not adopted this procedure here because, as we move away from PrM = 1, the cascade-
completion peaks occur at different times in plots of εu and εb, as we have discussed in detail in
earlier sections of this paper.

Let us now turn to the PrM dependence of the multiscaling exponent ratios shown
in tables 6 and 7 and in figures 24(a.3)–(d.3) and 25(a.3)–(d.3). Even though our error
bars are large, given the conservative, local-slope error analysis we have described in the
previous section, a trend emerges: at large values of PrM, the magnetic field is clearly more
intermittent than the velocity field, in as much as the deviations of ζ b

p from the simple-scaling
prediction are stronger than their counterparts for ζ u

p . However, the velocity field becomes
more intermittent than the magnetic field as we lower PrM. Could this result, namely the
dependence of our multiscaling exponent ratios on PrM, be an artifact? We believe not. As we
have discussed above, dissipation ranges in our spectra are adequately resolved; furthermore,
we have determined exponent ratios from a rather stringent local-slope analysis, which is
rarely presented in earlier DNS studies of MHD turbulence. Ultimately, of course, this PrM

dependence of multiscaling exponents in MHD turbulence must be tested in detail in very-high-
resolution DNS studies of MHD turbulence; such studies should become possible with the next
generation of supercomputers. In particular, such supercomputers should allow us to achieve
high Reynolds numbers along with higher values kmaxη

u
d and kmaxη

b
d than we have been able to

obtain in runs R1D and R2D so that we have both well-resolved inertial and dissipation ranges.
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For a fixed value of PrM, we conjecture that, as in fluid turbulence, the energy-spectrum
exponents and multiscaling exponent ratios do not depend on the Reλ if the latter is large
enough to ensure that we have fully developed, homogeneous, isotropic MHD turbulence with
a substantial inertial range. Our results for the spectral exponents (see e.g. figures 8(c.1),
(g.1), (c.2) and (c.3) for runs R3 (Reλ = 121), R3B (Reλ = 210), R3C (Reλ = 172) and R3D
(Reλ = 239), respectively) are consistent with this conjecture, as are the multiscaling exponent
ratios given in table 8 for PrM = 1.

It is useful to note at this stage that a recent experimental study of MHD turbulence in the
solar wind [57] provides evidence for velocity fields that are more strongly intermittent than the
magnetic field; this study does not give the value of PrM. However, its data for multiscaling
exponents are qualitatively similar to those we obtain at low values of PrM. Furthermore, PDFs
of HC have also been obtained from solar-wind data [56]; these are similar to the PDFs we
obtain for HC. Of course, we must exercise caution in comparing results from DNS studies of
homogeneous, isotropic, incompressible MHD turbulence with measurements on the solar wind,
where anisotropy and compressibility can be significant; and, for the solar wind, we might also
have to consider kinetic effects that are not captured by the MHD equations.

The last point we wish to address is the issue of strong universality of exponent ratios. In
the fluid-turbulence context, such strong universality [42, 43] implies the equality of exponents
(and, therefore, their ratios) determined from decaying-turbulence studies (say at the cascade-
completion time) or from studies of statistically steady turbulence. Does such strong universality
have an analogue in MHD turbulence? Our data, for any fixed value of PrM in tables 6 and 7, are
consistent with such strong universality of multiscaling exponent ratios in MHD turbulence; but,
of course, our large error bars imply that a definitive confirmation of such strong universality in
MHD turbulence must await DNS studies that might become possible in the next generation of
high-performance computing facilities.
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