323 research outputs found

    Charge Detection in Phosphorus-doped Silicon Double Quantum Dots

    Full text link
    We report charge detection in degenerately phosphorus-doped silicon double quantum dots (DQD) electrically connected to an electron reservoir. The sensing device is a single electron transistor (SET) patterned in close proximity to the DQD. Measurements performed at 4.2K show step-like behaviour and shifts of the Coulomb Blockade oscillations in the detector's current as the reservoir's potential is swept. By means of a classical capacitance model, we demonstrate that the observed features can be used to detect single-electron tunnelling from, to and within the DQD, as well as to reveal the DQD charge occupancy.Comment: 4 pages, 3 figure

    Fine and Large Coulomb Diamonds in a Silicon Quantum Dot

    Full text link
    We experimentally study the transport properties of silicon quantum dots (QDs) fabricated from a highly doped n-type silicon-on-insulator wafer. Low noise electrical measurements using a low temperature complementary metal-oxide-semiconductor (LTCMOS) amplifier are performed at 4.2 K in liquid helium. Two series of Coulomb peaks are observed: long-period oscillations and fine structures, and both of them show clear source drain voltage dependence. We also observe two series of Coulomb diamonds having different periodicity. The obtained experimental results are well reproduced by a master equation analysis using a model of double QDs coupled in parallel.Comment: 5 pages, 4 figures, to appear in Jpn. J. Appl. Phy

    Design and application of a multi-modal process tomography system

    Get PDF
    This paper presents a design and application study of an integrated multi-modal system designed to support a range of common modalities: electrical resistance, electrical capacitance and ultrasonic tomography. Such a system is designed for use with complex processes that exhibit behaviour changes over time and space, and thus demand equally diverse sensing modalities. A multi-modal process tomography system able to exploit multiple sensor modes must permit the integration of their data, probably centred upon a composite process model. The paper presents an overview of this approach followed by an overview of the systems engineering and integrated design constraints. These include a range of hardware oriented challenges: the complexity and specificity of the front end electronics for each modality; the need for front end data pre-processing and packing; the need to integrate the data to facilitate data fusion; and finally the features to enable successful fusion and interpretation. A range of software aspects are also reviewed: the need to support differing front-end sensors for each modality in a generic fashion; the need to communicate with front end data pre-processing and packing systems; the need to integrate the data to allow data fusion; and finally to enable successful interpretation. The review of the system concepts is illustrated with an application to the study of a complex multi-component process

    Detection of charge motion in a non-metallic silicon isolated double quantum dot

    Get PDF
    As semiconductor device dimensions are reduced to the nanometer scale, effects of high defect density surfaces on the transport properties become important to the extent that the metallic character that prevails in large and highly doped structures is lost and the use of quantum dots for charge sensing becomes complex. Here we have investigated the mechanism behind the detection of electron motion inside an electrically isolated double quantum dot that is capacitively coupled to a single electron transistor, both fabricated from highly phosphorous doped silicon wafers. Despite, the absence of a direct charge transfer between the detector and the double dot structure, an efficient detection is obtained. In particular, unusually large Coulomb peak shifts in gate voltage are observed. Results are explained in terms of charge rearrangement and the presence of inelastic cotunneling via states at the periphery of the single electron transistor dot

    Senior Jazz Composition Recital: Matt Podd, composition

    Get PDF

    A Vivaldi Antenna with Improved Bandwidth and Gain

    Get PDF
    In this paper, the radiation characteristics of the conventional Vivaldi antenna are improved by proposing a novel design of a Vivaldi antenna. This proposed Vivaldi antenna is excited through three slots by using the L-probe microstrip feeder. The novel design can provide higher gain and wider bandwidth compared to that of the conventional Vivaldi antenna of the same size. The CST MWS software is used to simulate the proposed Vivaldi antenna. The measured and the simulated S-parameters were compared so that the feasibility of the proposed Vivaldi antenna was validated. The measured S-parameters show that the impedance bandwidth of the proposed Vivaldi antenna was from 1.976 to 7.728 GHz, while the measured maximum gain is 4.9 dBi at the operating frequency of 3 GHz

    Legendre transform in the thermodynamics of flowing polymer solutions

    Get PDF
    We propose a Legendre transform linking two different choices of nonequilibrium variables (viscous pressure tensor and configuration tensor) in the thermodynamics of flowing polymer solutions. This may avoid some current confusions in the analysis of thermodynamic effects in polymer solutions under flow

    Facelock: familiarity-based graphical authentication

    Get PDF
    Authentication codes such as passwords and PIN numbers are widely used to control access to resources. One major drawback of these codes is that they are difficult to remember. Account holders are often faced with a choice between forgetting a code, which can be inconvenient, or writing it down, which compromises security. In two studies, we test a new knowledge-based authentication method that does not impose memory load on the user. Psychological research on face recognition has revealed an important distinction between familiar and unfamiliar face perception: When a face is familiar to the observer, it can be identified across a wide range of images. However, when the face is unfamiliar, generalisation across images is poor. This contrast can be used as the basis for a personalised ‘facelock’, in which authentication succeeds or fails based on image-invariant recognition of faces that are familiar to the account holder. In Study 1, account holders authenticated easily by detecting familiar targets among other faces (97.5% success rate), even after a one-year delay (86.1% success rate). Zero-acquaintance attackers were reduced to guessing (<1% success rate). Even personal attackers who knew the account holder well were rarely able to authenticate (6.6% success rate). In Study 2, we found that shoulder-surfing attacks by strangers could be defeated by presenting different photos of the same target faces in observed and attacked grids (1.9% success rate). Our findings suggest that the contrast between familiar and unfamiliar face recognition may be useful for developers of graphical authentication systems

    'We capture their comments before we leave the station': Service user involvement in the delivery of Appropriate Adult Schemes

    Get PDF
    The concept of participation is now widely accepted in healthcare and social services, but is less apparent in the delivery of services for vulnerable people who encounter the Criminal Justice System and its associated agencies (Buck et al, 2020). This article considers the extent to which children and ‘vulnerable’ adults who have been detained in police custody are currently able to actively participate in the design and delivery of Appropriate Adult Schemes. This paper draws together responses from 43 services in England and Wales concerning levels of service user engagement to ascertain the current level of participation, and to make recommendations for the future. The paper applies Forbat, et al.'s (2009) models of service user involvement to conceptualise ideological drivers which underpin the Appropriate Adult Scheme's commitment to involvement. The data reveal that while there is a genuine desire to improve service user participation, that institutional, financial, and attitudinal barriers mean that participation either does not occur or is at a very cursory level

    The physiological response of cut carnation flowers to ethanol and acetaldehyde post-harvest treatments.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2000.A replacement for silver thiosulphate as a commercial post-harvest treatment needs to be found. The longevity of cut carnation flowers is extended by all concentrations of ethanol tested. Compared to a water control, the vase-life of ethanol-treated flowers is between 150 and 250% longer. The greatest longevity increases are recorded with 3% ethanol. The use of ethanol as a post-harvest treatment was tested. The longevity increase as a result of ethanol application only occurs if the ethanol is applied as a holding solution. Pulse treatments are not effective at delaying the senescence of the flowers. The sooner the ethanol is applied, the greater the increase in vase life. If ethanol treatment is halted at any point during the experiment, the longevity of the flowers is reduced. It was observed that the longer the stems of ethanol-treated flowers, the greater the longevity increases. The ethanol holding solution does not prevent the action of external ethylene, thereby restricting the potential of ethanol as a commercial post-harvest treatment. Physiologically, flowers treated with ethanol exhibit a different senescence process to control flowers. The typical in-rolling of the petals of carnation flowers is not seen, instead the petals appear burnt. The ovaries are also notably effected by ethanol, being smaller and more yellow in colour. Ethanol treatment results in longevity increases by inhibiting the formation of ethylene, the plant hormone responsible for senescence. The concentration of the direct precursor to ethylene, ACC, as well as the activity of the enzyme that converts ACC to ethylene, ACC oxidase, is reduced to almost zero in the tissues of treated flowers. Another physiological factor affected by ethanol treatment is the carbohydrate status of the flowers. The normal sink activity of the ovary is inhibited by ethanol treatment. Although the carbohydrate content of the petals is found to decrease sharply in ethanol-treated flowers, these carbohydrates are not relocated to the ovary. The ovary does not increase in dry matter or chlorophyll content. The carbohydrate content decreases as a result of ethanol treatment, and when ¹⁴C sucrose was applied to petals, no radioactivity was recovered in the ovary. The petals and ovary are the organs most effect by ethanol activity, as when ¹⁴C ethanol was applied to cut carnation flowers as a pulse, the majority of the radioactivity was discovered here. The protein content of cells of both organs decreases significantly compared to control flowers. This is a total protein loss, rather than the destruction of specific systems. If the activity of alcohol dehydrogenase is prevented in ethanol-treated flowers, inhibiting the conversion of ethanol to acetaldehyde, no longevity increases are seen. The airspace surrounding treated flowers was found to contain ethanol and small amounts of acetaldehyde. The tissues of flowers treated with ethanol show an increase in the acetaldehyde content, as well as the ethanol content, especially in the ovary. The application of acetaldehyde directly to cut carnation flowers as a holding solution resulted in the vase life of the flowers increased by 150%. To determine the effectiveness of acetaldehyde as a post-harvest treatment, various concentrations of acetaldehyde were applied to cut carnation ftowers as a pulse treatment and a holding solution. Pulse treatments did not increase the vase life of flowers, and resulted in a number of negative effects in the flower. A holding solution of acetaldehyde does increase the longevity of cut carnation flowers, provided it is above a certain concentration. Treatments at concentrations below 1% acetaldehyde appear to promote flower senescence. The use of acetaldehyde as a post-harvest treatment has many of the same disadvantages as ethanol treatment. Acetaldehyde must also be applied as a holding solution for as long as possible. If removed from this solution, death of the organ occurred quickly. Acetaldehyde is also ineffective against external ethylene. A negative effect of acetaldehyde not found in ethanol-treated flowers, is that the longer the stem of cut carnation flowers, the shorter the resultant vase life. Physiologically the responses in cut carnation flowers were very similar to those seen in ethanol-treated flowers. Acetaldehyde inhibited the formation of ethylene completely. Almost no ACC can be found in treated tissues, and the action of ACC oxidase is completely reduced. The petals of acetaldehyde-treated flowers suffer from severe petal browning, rather than in rolling. The ovaries are particularly badly effected by treatment. There are large scale losses in fresh weight and chlorophyll content. The latter results in the ovaries appearing yellow in colour. They also show a loss in structure. The sink activity of these ovaries is destroyed. Like ethanol-treated flowers, the carbohydrate content of both the petals and ovaries are dramatically reduced. When ¹⁴C sucrose was applied to one of the. petals, almost no radioactivity was recorded in the ovary. There. is also a major loss in general protein content, slightly more severe than in ethanol-treated flowers. The conversion of ethanol to acetaldehyde is necessary in order to achieve longevity increases in ethanol-treated flowers. If the conversion of this acetaldehyde to ethanol is prevented in acetaldehyde-treated flower there is once again no longevity increase. Both ethanol and acetaldehyde are required within the system to result in increased longevity. Although ethanol and acetaldehyde treatments result in decreases in the total protein content of the flowers, certain enzymes remain active. Alcohol dehydrogenase is a bi-directional enzyme, capable of converting ethanol to acetaldehyde and then back to ethanol again. The activity of this enzyme, in both orientations, is increased in ethanol and acetaldehyde-treated flowers. The activity of pyruvate decarboxylase, which converts pyruvate to acetaldehyde, is also increased as a result of both treatments. The similarities of the physiological response of cut carnation flowers to ethanol and acetaldehyde post-harvest treatments, and the increased activity of these enzymes, indicate that the effect of both compounds on longevity is closely linked
    corecore