We report charge detection in degenerately phosphorus-doped silicon double
quantum dots (DQD) electrically connected to an electron reservoir. The sensing
device is a single electron transistor (SET) patterned in close proximity to
the DQD. Measurements performed at 4.2K show step-like behaviour and shifts of
the Coulomb Blockade oscillations in the detector's current as the reservoir's
potential is swept. By means of a classical capacitance model, we demonstrate
that the observed features can be used to detect single-electron tunnelling
from, to and within the DQD, as well as to reveal the DQD charge occupancy.Comment: 4 pages, 3 figure