93 research outputs found

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS

    Therapeutic effect of all-trans-retinoic acid (at-RA) on an autoimmune nephritis experimental model: role of the VLA-4 integrin

    Get PDF
    BACKGROUND: Mercuric chloride (HgCl(2)) induces an autoimmune nephritis in the Brown Norway (BN) rats characterized by anti-glomerular basement membrane antibodies (anti-GBM Ab) deposition, proteinuria and a severe interstitial nephritis, all evident at day 13 of the disease. We assessed the effects of all-trans retinoic acid (at-RA) in this experimental model. At-RA is a vitamin A metabolite which has shown beneficial effects on several nephropathies, even though no clear targets for at-RA were provided. METHODS: We separated animals in four different experimental groups (HgCl(2), HgCl(2)+at-RA, at-RA and vehicle). From each animal we collected, at days 0 and 13, numerous biological samples: urine, to measure proteinuria by colorimetry; blood to determine VLA-4 expression by flow citometry; renal tissue to study the expression of VCAM-1 by Western blot, the presence of cellular infiltrates by immunohistochemistry, the IgG deposition by immunofluorescence, and the cytokines expression by RT-PCR. Additionally, adhesion assays to VCAM-1 were performed using K562 α4 transfectant cells. ANOVA tests were used for statistical significance estimation. RESULTS: We found that at-RA significantly decreased the serum levels of anti-GBM and consequently its deposition along the glomerular membrane. At-RA markedly reduced proteinuria as well as the number of cellular infiltrates in the renal interstitium, the levels of TNF-α and IL-1β cytokines and VCAM-1 expression in renal tissue. Moreover, we reported here for the first time in an in vivo model that at-RA reduced, to basal levels, the expression of VLA-4 (α4β1) integrin induced by mercury on peripheral blood leukocytes (PBLs). In addition, using K562 α4 stable transfectant cells, we found that at-RA inhibited VLA-4 dependent cell adhesion to VCAM-1. CONCLUSION: Here we demonstrate a therapeutic effect of at-RA on an autoimmune experimental nephritis model in rats. We report a significant reduction of the VLA-4 integrin expression on PBLs as well as the inhibition of the VLA4/VCAM1-dependent leukocyte adhesion by at-RA treatment. Thereby we point out the VLA-4 integrin as a target for at-RA in vivo

    Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction

    Get PDF
    Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (≥ 50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function

    Comparing Redundant and Sky-model-based Interferometric Calibration: A First Look with Phase II of the MWA

    Get PDF
    © 2018. The American Astronomical Society. All rights reserved.. Interferometric arrays seeking to measure the 21 cm signal from the epoch of reionization (EOR) must contend with overwhelmingly bright emission from foreground sources. Accurate recovery of the 21 cm signal will require precise calibration of the array, and several new avenues for calibration have been pursued in recent years, including methods using redundancy in the antenna configuration. The newly upgraded Phase II of Murchison Widefield Array (MWA) is the first interferometer that has large numbers of redundant baselines while retaining good instantaneous UV coverage. This array therefore provides a unique opportunity to compare redundant calibration with sky-model-based algorithms. In this paper, we present the first results from comparing both calibration approaches with MWA Phase II observations. For redundant calibration, we use the package OMNICAL and produce sky-based calibration solutions with the analysis package Fast Holographic Deconvolution (FHD). There are three principal results: (1) We report the success of OMNICAL on observations of ORBComm satellites, showing substantial agreement between redundant visibility measurements after calibration. (2) We directly compare OMNICAL calibration solutions with those from FHD and demonstrate that these two different calibration schemes give extremely similar results. (3) We explore improved calibration by combining OMNICAL and FHD. We evaluate these combined methods using power spectrum techniques developed for EOR analysis and find evidence for marginal improvements mitigating artifacts in the power spectrum. These results are likely limited by the signal-to-noise ratio in the 6 hr of data used, but they suggest future directions for combining these two calibration schemes

    The Methyltransferase WBSCR22/Merm1 Enhances Glucocorticoid Receptor Function and Is Regulated in Lung Inflammation and Cancer

    Get PDF
    Glucocorticoids (GC) regulate cell fate and immune function. We identified the metastasis-promoting methyltransferase, metastasis-related methyltransferase 1 (WBSCR22/Merm1) as a novel glucocorticoid receptor (GR) regulator relevant to human disease. Merm1 binds the GR co-activator GRIP1 but not GR. Loss of Merm1 impaired both GR transactivation and transrepression by reducing GR recruitment to its binding sites. This was accompanied by loss of GR-dependent H3K4Me3 at a well characterized promoter. Inflammation promotes GC resistance, in part through the actions of TNFα and IFNγ. These cytokines suppressed Merm1 protein expression by driving ubiquitination of two conserved lysine residues. Restoration of Merm1 expression rescued GR transactivation. Cytokine suppression of Merm1 and of GR function was also seen in human lung explants. In addition, striking loss of Merm1 protein was observed in both inflammatory and neoplastic human lung pathologies. In conclusion, Merm1 is a novel regulator of chromatin structure affecting GR recruitment and function, contributing to loss of GC sensitivity in inflammation, with suppressed expression in pulmonary disease

    Cross-Reactivity of Herpesvirus-Specific CD8 T Cell Lines Toward Allogeneic Class I MHC Molecules

    Get PDF
    Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495–503/A*0201, BMLF1259–267/A*0201, or BZLF154–64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-α production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-α production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection

    Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner

    Get PDF
    Brugia malayi causes the human tropical disease, lymphatic filariasis. Microfilariae (Mf) of this nematode live in the bloodstream and are ingested by a feeding mosquito vector. Interestingly, in a remarkable co-evolutionary adaptation, Mf appearance in the peripheral blood follows a circadian periodicity and reaches a peak when the mosquito is most likely to feed. For the remaining hours, the majority of Mf sequester in the lung capillaries. This circadian phenomenon has been widely reported and is likely to maximise parasite fitness and optimise transmission potential. However, the mechanism of Mf sequestration in the lungs remains largely unresolved. In this study, we demonstrate that B. malayi Mf can, directly adhere to vascular endothelial cells under static conditions and under flow conditions, they can bind at high (but not low) flow rates. High flow rates are more likely to be experienced diurnally. Furthermore, a non-periodic nematode adheres less efficiently to endothelial cells. Strikingly C3, the central component of complement, plays a crucial role in the adherence interaction. These novel results show that microfilariae have the ability to bind to endothelial cells, which may explain their sequestration in the lungs, and this binding is increased in the presence of inflammatory mediators

    Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior

    Get PDF
    The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ∼28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior

    Search for the Epoch of Reionisation with HERA: Upper Limits on the Closure Phase Delay Power Spectrum

    Get PDF
    Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionisation (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z=7.7z=7.7. We find at 95% confidence that the 21 cm EoR brightness temperature is ≤\le(372)2^2 "pseudo" mK2^2 at 1.14 "pseudo" hh Mpc−1^{-1}, where the "pseudo" emphasises that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.Comment: 16 pages, 14 figures, accepted for publication by MNRA
    • …
    corecore