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ABSTRACT

Interferometric arrays seeking to measure the 21 cm signal from the Epoch of Reionization must

contend with overwhelmingly bright emission from foreground sources. Accurate recovery of the 21 cm

signal will require precise calibration of the array, and several new avenues for calibration have been

pursued in recent years, including methods using redundancy in the antenna configuration. The newly

upgraded Phase II of Murchison Widefield Array (MWA) is the first interferometer that has large

numbers of redundant baselines while retaining good instantaneous UV-coverage. This array therefore

provides a unique opportunity to compare redundant calibration with sky-model based algorithms.

In this paper, we present the first results from comparing both calibration approaches with MWA

Phase II observations. For redundant calibration, we use the package OMNICAL, and produce sky-based

calibration solutions with the analysis package Fast Holographic Deconvolution (FHD). There are

three principal results. (1) We report the success of OMNICAL on observations of ORBComm satellites,

showing substantial agreement between redundant visibility measurements after calibration. (2) We

directly compare OMNICAL calibration solutions with those from FHD, and demonstrate these two

different calibration schemes give extremely similar results. (3) We explore improved calibration by
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combining OMNICAL and FHD. We evaluate these combined methods using power spectrum techniques

developed for EoR analysis and find evidence for marginal improvements mitigating artifacts in the

power spectrum. These results are likely limited by signal-to-noise in the six hours of data used, but

suggest future directions for combining these two calibration schemes.

Keywords: dark ages, reionization, first stars; instrumentation: interferometers; methods: data analy-

sis; techniques: interferometric

1. INTRODUCTION

21 cm observations of the Epoch of Reionization

(EoR) have the potential to reveal a wealth of infor-

mation about the formation of the first stars and galax-

ies by measuring the three dimensional power spectrum

and full tomographic maps of the neutral intergalac-

tic medium (IGM; Morales & Wyithe 2010; Furlanetto

2016). However, these observations are technically very

challenging due to bright astrophysical foregrounds, the

complex frequency dependence of instrumental response

of radio interferometers, radio frequency interference

(RFI), and the effects of the ionosphere.

Recent work has highlighted the critical role precision

instrument calibration will play in disentangling the

faint cosmological signal from the bright foregrounds

(Barry et al. 2016; Ewall-Wice et al. 2017; Trott &

Wayth 2016; Patil et al. 2016). Current calibration ef-

forts for EoR observations largely fall into two camps:

sky-based calibration using deep foreground catalogs

and forward modeling of the instrument visibilities

(Beardsley et al. 2016; Dillon et al. 2015; Trott et al.

2016; Patil et al. 2016; Carroll et al. 2016; Procopio

et al. 2017; Hurley-Walker et al. 2016; Intema et al.

2017), and redundant calibration that foregoes a sky

model but requires the antennas be placed on a regular

grid (Wieringa 1992; Liu et al. 2010; Zheng et al. 2014).

To date it has been impossible to directly compare
the efficacy of the two calibration approaches on real

data. Redundant arrays tend to have very poor UV-

coverage, and are thus hard to calibrate with sky-based

approaches (Parsons et al. 2012a; Zheng et al. 2016),

and arrays with good imaging performance do not have

the regular antenna layout necessary for redundant cal-

ibration.

Using new observations with Phase II (Wayth et al.

in prep.) of the Murchison Widefield Array (MWA; Tin-

gay et al. 2013; Bowman et al. 2013) we report on the

first direct comparison of sky and redundant calibra-

tion with an Epoch of Reionization instrument. During

Phase I, the MWA consisted of 128 antenna tiles in a

pseudo-random layout designed for excellent instanta-

neous uv coverage. Phase II added 128 additional tiles

(for a total of 256), but only 128 can be correlated si-

multaneously. Phase II therefore operates in two modes:

a compact array and an extended array, each consisting

of a subset of the 256 total available tiles. In the com-

pact array new tiles were added in two hexagonal cores

(see Section 2), providing a hybrid data set with both

redundant baselines and the excellent imaging charac-

teristics of the existing MWA array (Beardsley et al.

2012). We use data from this unique array to directly

compare redundant and sky-based calibration.

The structure of the remainder of this paper is as fol-

lows. In Section 2, we further describe the compact

array of Phase II of the MWA and the observations

used in our analysis. In Section 3, we describe the

calibration techniques used to perform both sky-based

and redundancy-based calibration. We also develop and

present new tools needed to map between the calibra-

tion approaches (Section 3.3.2). In Section 4, we present

the results of applying redundant calibration to observa-

tions of the ORBComm satellite system, and in Section

5, we directly compare sky-based and redundant cali-

bration solutions derived from observations of an EoR

target field. In Section 6, we explore ways of combining

the calibration results and compare the resulting EoR

power spectra (PS). We discuss potential shortcomings

of our analysis in Section 7, and conclude in Section 8.

2. OBSERVATIONS

2.1. Phase II of the MWA

MWA Phase II compact array consists of 128 tiles.

Each tile includes 16 dual-polarization dipoles, as shown

in Figure 1. 72 of the tiles are configured into two

hexagons with high redundancy for redundant calibrata-

bility and power spectrum sensitivity. The other 56 tiles

are arranged with minimal redundancy; 8 of these tiles

are located at two to three hundred meters from the

core to provide extended baselines for better imaging

and survey capabilities.

The upper panel of Figure 2 shows the configuration

of all 128 tiles of MWA Phase II; the lower panel shows

the north hexagon, with tile numbers labeled. All tiles

in the north hexagon are labeled from 1001 to 1036 (bot-

tom plot in Figure 2), and tiles in the south hexagon are

labeled from 1037 to 1072. Due to ground conditions at

the MWA site, one of the tiles in the south hexagon

(tile 1037) could not be placed at the position where
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Figure 1. MWA Phase II tiles in the Murchison Radio-
Astronomy Observatory in Western Australia. (Taken by
Greg Rowbotham in June 2016 when Phase II was under
construction.)
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Figure 2. Top: MWA Phase II Configuration. Tile 1037
(red) on the upper left corner of the south hexagon was
flagged because the site terrain prevented its placement. Bot-
tom: Tile positions of the north hexagon, with tile numbers
labeled.

the corner of the hexagon should be so it is flagged,

leaving 71 hexagon tiles and 56 non-hexagon tiles. The

hexagon shaped configuration is designed for two rea-

sons: increased sensitivity on short baselines for power

spectrum measurements (Parsons et al. 2012a) and op-

portunities for redundant calibration.

2.2. The Data

The data we processed in this work are from MWA

Phase II compact array observations of the EoR0 field

(RA = 0◦, Dec = −27◦) at frequencies of 167 − 197

MHz (corresponding to a 21 cm redshift of 7.5 − 6.2).

Observations were taken on 2016 November 17, from

11:26 to 13:10, 2016 November 19, from 11:18 to 13:02,

and 2016 November 21, from 11:19 to 12:54 (UTC), as

well as 2 minutes of ORBComm satellite observations at

134− 164 MHz on 2016 September 21 at 18:43 (UTC).

The total band was divided into 24 1.28 MHz sub-bands;

each sub-band is further sub-divided into 32 fine chan-

nels with a frequency resolution of 40 kHz. The time of

observation per data file was 112 seconds, with a time

resolution of 0.5 seconds. The data was preprocessed by

the COTTER pipeline (Offringa et al. 2015), which uses

AOFlagger1 to flag radio frequency interference (RFI),

reduces data volume by averaging in time and frequency,

and converts data into the uvfits format. In this work,

we average the EoR0 data to 2 second time integrations

and 80 kHz frequency resolution. The ORBComm data

were averaged into 4 second time integrations and 40

kHz frequency resolution. We choose the EoR0 high

band observation because this is one of the best-studied

fields with the MWA (Carroll et al. 2016; Beardsley et al.

2016). It has low sky temperature and relatively few

bright, resolved sources which leads to better EoR sensi-

tivity (Jacobs et al. 2016). The ORBComm observation

is for testing redundant calibration because of its high

signal to noise.

In the MWA, an analog beamformer can steer the

main lobe of the tile primary beam to change the field

being observed. For EoR observerations, we use the

“drift-and-shift” method, where we observe specific

pointings with the beamformer and allow the sky to

drift overhead for some duration before re-pointing.

The EoR0 observations we used in this work include 5

pointings, and each pointing spans 30 minutes.2 The

2 minutes ORBComm Observation consists of a single

pointing towards zenith.

3. CALIBRATION TECHNIQUES

Discrepancies between measured data visibilities and

true visibilities can have different causes: instrumen-

tal gains, cross talk between tiles, RFI, thermal noise,

tile pointing error, ionosphere distortion, etc. In this

work, we only consider the contribution from the ana-

log/digital electronics of each tile and mainly focus on

the complex antenna-based instrumental gain calibra-

tion. In this section, we will briefly show the basic

mathematical background of both sky calibration and

redundant calibration and describe the specific software

packages we use to perform them.

1 http://aoflagger.sourceforge.net/doc/api/
2 The pointings are labeled as -2, -1, 0, 1, and 2, where 0 cor-

responds to a zenith pointing. Pointing -2 and 2 have less data,
i.e., less than 30 minutes.

http://aoflagger.sourceforge.net/doc/api/
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3.1. Assumptions

The instrumental calibration is assumed to be tile-

based. At a given polarization p, given frequency chan-

nel ν, and given time step t, the basic assumption of the

relation between the measured visibility vij recorded by

the baseline ij (the baseline formed by tile i and tile j)

and the true visibility yij is described by Equation 1,

where gi and gj are the complex gains of tile i and tile

j, respectively, and nij is a random noise term.

vij(t, ν, p) ≈ gi(t, ν, p)g∗j (t, ν, p)yij(t, ν, p) + nij (1)

In the case of MWA, the tile gains vary from point-

ing to pointing due to the change in tile beams. As

we observed from real data calibration (using both sky-

based calibration and redundant calibration), gains of

the same pointing also vary from day to day, but are

relatively stable over time within one pointing (30 min-

utes). Barry (2018) has demonstrated that the gain am-

plitudes are stable if the ambient temperature does not

change. Therefore, we assume that 30 minutes of a sin-

gle pointing is the longest time scale within which we can

consider the instrumental gains to be time independent.

Our goal is to solve for the gain per time, per fre-

quency channel, per polarization for each tile using two

different methodologies: 1. generate model visibilities

based on the combination of our best models for the sky,

array layout, and tile primary beam, then minimize the

difference between model visibilities and data (sky cali-

bration); 2. using redundancy, minimize the differences

among the measurements from redundant baselines (re-

dundant calibration).

3.2. FHD sky-based calibration

Fast Holographic Deconvolution (FHD3 Sullivan et al.

2012) is a software package which provides interferomet-

ric data simulation, calibration, and imaging. In this

paper, we will use the FHD framework as our method

to do sky calibration.

In Equation 1, the true visibility yij consists of fore-

grounds and EoR signal. We neglect the EoR term be-

cause it is orders of magnitude smaller than the fore-

ground term. If we have reasonable knowledge of the

foreground sources, we can generate model visibilities

mij , and replace yij with mij in Equation 1, as Equa-

tion 2 shows:

vij ≈ gig∗jmij + nij (2)

3 https://github.com/EoRImaging/FHD

We use a sky model developed by Carroll et al. (2016)

specifically for the EoR0 field, which contains about

11000 point sources in the field of view. We then solve

for the gains by evaluating χ2 in Equation 3, making it

a least squares problem, with 2×Ntiles− 14 parameters

to solve:

χ2 =
∑
ij

|vij − gig∗jmij |2

σ2
ij

(3)

σ2
ij is the noise variance of baseline ij5. We solve for each

gi per polarization per frequency channel by feeding an

initial guess of the gain solutions (generally all ones by

default), fixing all other gj(j 6= i), minimizing the χ2 to

get a new guess for gi, then average it with the previous

guess of gi; this average is treated as the solution for gi,

and we then run the previous process iteratively until

the solutions converge (Salvini & Wijnholds 2014).

Following this per-tile, per-frequency, per-polarization

sky-based calibration, FHD reduces the number of cali-

bration parameters by computing an average bandpass

over subsets of the tiles and then only allowing tile-to-

tile deviations from this average solution to be smooth

in frequency (Beardsley et al. 2016; Barry et al. 2016).

The exact form of the final calibration solutions gi(ν)

for tile i is given by:

gi(ν) = Bc(ν)[(α0,i+α1,iν+α2,iν
2)e2πi(β0,i+β1,iν)+Ri(ν)]

(4)

Bc(ν) is a tile-independent bandpass amplitude calcu-

lated by averaging the amplitude gains over all tiles

which share a cable type. In the MWA Phase II de-

sign, each tile has one of 4 distinct lengths of cable lead-

ing from its beamformer to the receiver: 90 m, 150 m,

230 m, or 320 m. This design leads to 4 subtly differ-

ent bandpass responses Bc(ν)’s due to different filters

used on different cable types and imperfect termina-

tions (Beardsley et al. 2016; Barry 2018). For each tile,

deviations from the per-cable type bandpass Bc(ν) are

fit with low order polynomials in frequency, with coeffi-

cients α0,i, α1,i, α2,i, β0,i, β1,i (α’s for the amplitude

and β’s for the phase). The final parameter, Ri(ν), is

the strongest sinusoidal cable reflection mode found for

tile i, which is a complex number. In this work, we only

fit Ri(ν) for 150 m cables which have the strongest re-

flection (Barry et al. 2016; Beardsley et al. 2016). The

motivation for this fitting methodology is to mitigate

4 The gains are complex so the number is multiplied by 2; The
overall absolute phase parameter is constrained by picking a phase
reference tile.

5 In FHD framework, the noise does not contribute to linear
least squares solver, i.e., σij ≡ 1, assuming all baselines having
the same noise level.
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frequency-dependent errors introduced by an incomplete

sky model, which can lead to foreground contamination

of an EoR signal (Barry et al. 2016; Beardsley et al.

2016).

3.3. Redundant Calibration (OMNICAL)

Mathematically, redundant calibration requires suffi-

cient baselines to measure the same Fourier mode of the

sky emission so that the there are more measurements

than the number of unknown visibilities and tile gains

(Liu et al. 2010). In Phase II data, only the two hexag-

onal sub-arrays are redundantly calibratable. For one

time step, one frequency channel, and one polarization,

the unknown parameters consist of tile gains (for those

tiles that participate in a minimum number of redundant

baselines) and the visibilities themselves for each unique

type of baseline. If only redundant baseline groups con-

taining at least 2 baselines are considered, there are 71

tiles and 181 unique baseline types and therefore 252 free

parameters to fit, while the number of measurements is

2477.6

In this paper, we use the package OMNICAL7 (Zheng

et al. 2014) for redundant calibration. When running

OMNICAL on the data, we load uvfits data files using the

open source python module pyuvdata8(Hazelton et al.

2017).

OMNICAL consists of two algorithms: a logarithmic

method (logcal) and a linearized method (lincal Liu

et al. 2010; Zheng et al. 2014). To interpret the algo-

rithms, we express the gain in the form of gi = eηi+iφi

with eηi the amplitude and φi the phase of tile i.

In logcal, we linearize the equations by taking the

logarithm of Equation 1, where the noise contribution is

represented by ωij = ln(1 +
nij

gig∗j yij
). This gives

ln(vij) = ηi + ηj + i(φi − φj) + ln(yij) + ωij (5)

By separating the real and imaginary parts of Equation

5, the amplitude terms and phase terms are separated.

We solve for the gains by minimizing Equation 6 and

7, which are the linear least squares equations for the

amplitudes and phases, respectively.∑
ij

[ln |vij | − ηi − ηj − ln |yij |]2 (6)

∑
ij

[arg(vij)− φi + φj − arg(yij)]
2 (7)

6 All parameters are complex numbers, thus the number of fitted
parameters, as well as the number of measurements, are multiplied
by two.

7 https://github.com/jeffzhen/omnical
8 https://github.com/HERA-Team/pyuvdata

However, the logcal method is biased. The noise is

assumed to be Gaussian and to have zero mean in

real/imaginary space, while this is not the case in am-

plitude/phase space (Liu et al. 2010). To address this

issue, lincal is introduced.

In lincal, we perform a Taylor expansion on Equa-

tion 1 about some fiducial guess g0i ’s for the gains and

y0ij ’s for the true visibilities, which leads to Equation 8.

vij ≈ g0i g0j
∗
y0ij + g0j

∗
y0ij∆gi+ g0i y

0
ij∆g

∗
j + g0i g

0
j
∗
∆yij (8)

where ∆gi = gi − g0i and ∆yij = yij − y0ij . This ex-

pansion linearizes Equation 1 so that we can employ a

least-squares fit to solve for the ∆gi’s, and ∆yij ’s. The

initial fiducial guess is required to be in a local minima

around the true solution; we use the logcal solutions

as the initial guesses for lincal. After we have the so-

lutions for gi and yij , we take them as our new fiducial

guess and feed them into lincal, and run this process

iteratively. lincal solves in real and imaginary space,

so if the noise level for all baselines is the same, the

least-squares fit is unbiased.

Before we start the calibration, we have to deal with

a phase wrapping problem: there is ambiguity between

0 and 2π in phase. For example, the difference between

a phase of 359◦ and 1◦ is 358◦ instead of 2◦. If there is

no pre-calibration before logcal, these calibration pro-

cedures can potentially take a small difference in phase

and drive it in the opposite direction instead of further

minimizing it. As a result, the calibration is not handled

properly and the solutions do not converge. To over-

come phase wrapping, we introduce firstcal as our

pre-calibration method, i.e., to get an initial estimate of

phase solutions.

3.3.1. Firstcal method

We use the firstcal module developed by the HERA

team to find a per tile delay to provide an initial phase

solution9 using array redundancy, without any reference

to the sky. firstcal takes visibility pairs vij and vkl
from the same redundant baseline group, calculates the

product of vij and v∗kl. If complex gains of all four tiles

differed only by a single per-tile delay, τi, then the time-

average of this quantity, Rijkl, is given by

Rijkl(ν) =〈vij(ν, t)v∗kl(ν, t)〉t
=A2(ν) exp(2πiν(τi − τj − τk + τl)).

(9)

Here ν is frequency and A is visibility amplitude. Mul-

tiplying vij by v∗kl cancels out the frequency structure of

9 https://github.com/HERA-Team/hera cal

https://github.com/HERA-Team/hera_cal
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the visibilities, leaving only the exponential of the four

tile delays. The Fourier transform of Equation 9 along

the frequency axis (i.e. the delay transform; Parsons &

Backer 2009), should be peaked at

τmax = τi − τj − τk + τl. (10)

With enough visibility pairs, we can produce a set of

coupled linear system equations like Equation 10 so

that we can solve for all τ simultaneously.10 Multiply-

ing each vij by e−2πiν(τi−τj) flattens the phase across

the band. This gives us a reasonably accurate starting

point for later calibration that effectively avoids phase

wrapping. Since all we require is a reasonable starting

point for OMNICAL, it is unnecessary to include all redun-

dant baseline pairs into the calculation. The number

of all redundant baseline pairs is large (27032 pairs),

while a subset of baseline pairs can be sufficient. We

only include baseline type (1001,1005) and (1001,1006)

(see Figure 2), so that the number of baseline pairs is

reduced by a factor of 10 (2970 pairs), which is more

computationally efficient.

3.3.2. Degeneracy Projection

Since redundant calibration does not rely on any in-

formation from the sky, there are 4 intrinsic degeneracy

parameters per frequency per polarization that OMNICAL

cannot constrain: one overall amplitude, which depends

on the sky flux density; one absolute phase, which de-

pends on the absolute timing of incoming plane waves;

and two rephasing parameters, which corresponds to the

tip and tilt of the array, or equivalently, the location

of the phase center on the sky (Liu et al. 2010; Zheng

et al. 2014; Dillon et al. 2017). OMNICAL can only be

performed in the redundant subset of the MWA Phase

II array (71 tiles), and without the degeneracy param-

eters determined, OMNICAL alone cannot provide an ab-

solute calibration. To perform absolute calibration after

OMNICAL, we use the FHD calibration solutions as ref-

erences to constrain the degeneracy parameters. Since

FHD calibration is based on a sky model, we take the

knowledge of the sky flux density and sky center of FHD

as a fiducial guess. We then look for the best fit 4 de-

generacy parameters per frequency per polarization for

the whole array for the OMNICAL solutions which makes

10 This system of equations has a degenerate additive offset
(an overall phase) that cannot be solved without an additional
constraint. This is equivalent to increasing the length of the cables
connecting each tile by the same length. Since this term drops out
of any difference τi − τj , is is not physically meaningful and can
be fixed arbitrarily (e.g. by demanding that all delays average to
0).

them comparable to FHD results. This fitting process

is defined as degeneracy projection.

The fitting for the amplitude parameter is straight-

forward: for OMNICAL, multiplying all gi by an arbitrary

positive constant, and simultaneously dividing yij by the

square of that constant does not change the amplitude

of g∗i gjyij . We correct the amplitude degeneracy param-

eter by multiplying each OMNICAL gain by eδ, where

δ =
1

Ntiles

(∑
i

ηFHDi −
∑
i

ηOMNICAL
i

)
(11)

To illustrate phase degeneracies, we evaluate Equation

12, which is the phase part of Equation 1:

γij = φi − φj + θij , (12)

where γij ≡ arg(vij), θij ≡ arg(yij). We can add a

linear field ~Φ ·~ri +ψ to φi, and simultaneously subtract
~Φ · (~ri − ~rj) from θij , to get a new set of solutions as

defined in Equation 13:φ′i = φi + ~Φ · ~ri + ψ

θ′ij = θij − ~Φ · (~ri − ~rj)
(13)

Under this transformation, γij in Equation 12 is invari-

ant, as Equation 14 shows (Zheng et al. 2016).

φ′i − φ′j + θ′ij = (φi + ~Φ · ~ri + ψ)− (φj + ~Φ · ~rj + ψ)

+ (θij − ~Φ · (~ri − ~rj))
= φi − φj + θij

(14)

Here ~ri is the ideal position of tile i, i.e., tile positions

with perfect redundancy. We assume all tiles are copla-

nar, ~ri is a 2D vector, thus ~Φ is 2D. The absolute phase

parameter is given by ψ, and the two rephasing param-

eters are given by the 2D vector ~Φ.

We define ∆Ψi ≡ arg(gFHDi /gOMNICAL
i ). Equation

15 shows the relation between calibration solutions and

phase degenerate parameters.

∆Ψi = Φxxi + Φyyi + ψ (15)

where (xi, yi) = ~ri. Equation 15 is a function of a plane.

The basic idea of solving for (Φx, Φy, ψ) is to fit a plane

in (xi, yi, ∆Ψi) space. This is the process of phase

degeneracy projection. The fitting details are described

in Appendix A.
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Figure 3. Complex visibilities plots of ORBComm observa-
tion at 137.1 MHz, 4 seconds of data. Each unique combina-
tion of color and symbol represents visibility measurements
from a unique baseline type. Upper left: Raw visibilities
from all redundant baseline groups; Bottom left: Calibrated
visibilities from all redundant baseline groups; Upper right:
Raw visibilities from 9 baseline types; Bottom right: Cali-
brated visibilities from 9 baseline types. The units are arbi-
trary because no absolute calibration is performed.

4. OBSERVATIONS OF ORBCOMM

As a first test of OMNICAL on MWA Phase II data, we

investigate observations at 137.1 MHz where the OR-

BComm satellite system transmits (Neben et al. 2015,

2016; Line et al. in prep.) because this data set has ex-

tremely high signal-to-noise. Since the MWA has a wide

field of view, it is difficult to point to a patch of sky with

a flux density dominated by one bright point source.

However, an ORBComm satellite provides a good op-

portunity to observe a ‘point source’ because its signal

is orders of magnitude brighter than any other sources

in the sky at 137.1 MHz. The near-infinite signal-to-

noise measurements on ORBComm are an excellent op-

portunity to quantify the uncertainties in the redundant

calibration procedure (Zheng et al. 2014).

Figure 3 shows the OMNICAL results on observations

of an ORBComm satellite with the MWA Phase II

hexagons on Sept 21, 2016. Each unique combination

of color and symbol represents visibilities measured by a

redundant baseline group. The upper left plot shows the

complex visibilities from all redundant baseline groups

before OMNICAL, and the lower left shows the same set

of data after calibration.

The constant amplitude of visibilities in the lower

left plot indicates a delta function in the image do-

main, which agrees with our point source expectation of

ORBComm. We pick 9 unique baseline groups as repre-

sentatives from the left column in Figure 3 and show the

uncalibrated (upper right) and calibrated (bottom right)

visibilities in the right column. This illustrates that

OMNICAL makes visibility measurements from baselines

with the same length and orientation cluster together,

i.e., OMNICAL is performing as expected: it makes visi-

bilities from physically redundant baselines agree with

each other. The level of the standard deviation within

each redundant visibility group is 1% comparing to their

magnitudes, which is possibly due to the non-perfectly

gridded antenna positions. This quantifies the system-

atic uncertainty of redundant calibration procedure for

MWA PhaseII array, or in other words, this level of

disagreement is the best that redundant calibration can

achieve.

5. COMPARISON BETWEEN FHD AND OMNICAL

In this section, we will take MWA Phase II observa-

tions targeting the EoR0 field as an example to show

the comparison between FHD sky calibration and re-

dundant calibration. All calibrations are performed per

data file (every 112 seconds), and the gains are assumed

to be time independent within a data file. In FHD cali-

bration, the sky model is a point source catalog specifi-

cally developed for EoR0 field (Carroll et al. 2016). All

time steps (2 second integrations) are fed into the lin-

ear least-square solver which minimizes the difference

between data and model and returns one set of time-

independent calibration solutions per file.

In OMNICAL, we average the data along the time axis

of each data file, i.e., average every two minutes of data

before calibrating for two technical purposes: increas-

ing SNR for better redundant calibration performance

(Liu et al. 2010) and excluding sparse flagged data sam-

ples without dramatically increasing computational ex-

pense.11

We also exclude the baseline type (1001, 1002) (the

index refers to Figure 2), which is the 14 m east-west

baseline type, because we have seen significant system-

atics from that baseline group. The visibility variances

in this group are about 6 times larger than other redun-

dant baseline groups. This could be due to strong cross-

11 In OMNICAL, explicitly excluding flagged baseline samples per
time and frequency requires generating distinct linear equations
per time and frequency instead of per data file, which is compu-
tationally infeasible.
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Figure 4. 112 seconds averaged complex visibilities plots of EoR0 data at 191 MHz from 8 redundant baseline groups. Each
color represents one redundant baseline group. Left column: raw visibilities, with arbitrary units; Middle column: visibilities
after OMNICAL, with degeneracy parameters projected (units: Jy); Right column: visibilities after FHD sky calibration (units:
Jy). Top row: East-West polarization; Bottom row: North-South polarization.

talk between tiles, or because the Galactic plane aligns

with these baselines (c.f. Thyagarajan et al. 2015), en-

hancing the effect of tile-to-tile beam variations across

the array (Noorishad et al. 2012). The reason is still

unclear, but it is a topic to be investigated in future

work.

5.1. Visibility Clustering

The redundant baselines should measure the same

Fourier mode of the sky regardless of the calibration pro-

cedures involved. Evaluating how visibilities measured

by redundant baselines agree with each other (visibility

clustering) is an approach to evaluate calibration meth-

ods. Figure 4 shows 112 second averaged complex visi-

bilities at 191 MHz observed on Nov 21, 2016. We plot

the visibilities for 8 types of baselines with lengths be-

low 20 wavelengths, which are of most importance for

EoR sensitivity, at 180 MHz. Visual inspection shows

substantial agreement between the two methods. Quan-

titatively, visibilities after OMNICAL (middle column) are

in better agreement than FHD (right column) (about 6%

to 30% reduction in the standard deviation of a cluster).

One explanation for this effect is that in FHD calibra-

tion, baselines shorter than 50 wavelengths at 180 MHz

are omitted (due to the difficulties in modeling diffuse

emission; Patil et al. 2016). Thus, short baselines (like

those plotted here) have less weight in FHD calibration;

OMNICAL uses the information of these short baselines.

OMNICAL also explicitly minimizes the variance within

redundant visibilities, thus it should lead to better vis-

ibility clustering than alternative methods. Although

this metric does not necessarily indicate a better cali-

bration, it shows that it is possible to put more weight

on the most EoR-sensitive baselines, instead of calibrat-

ing with only long baselines with low EoR sensitivity as

is currently required for sky calibration.

5.2. Direct Comparison

Figure 5 shows a direct comparison between FHD so-

lutions and OMNICAL solutions after degeneracy projec-

tion. The data are from a 30 minute zenith pointing

on the EoR0 field, and calibration solutions have been

averaged over the entire pointing. Figure 5 shows solu-

tions for tile 1024 and tile 1064 in gain amplitudes (top)
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Figure 5. 30 minutes averaged gain solutions of tile 1024 (left column) and tile 1064 (right column) from zenith pointing,
east-west polarization. Upper: Gain amplitude; Middle: Gain phase. Lower: fractional difference between FHD solution and
OMNICAL solutions with degeneracy projected. Blue: FHD solutions; Red: OMNICAL solutions after projecting degeneracy. The
fractional difference in the lower plots is calculated by dividing the amplitude of the complex difference between the two by the
amplitude of FHD solutions.

and phases (middle) over frequency, as well as fractional

difference between solutions from these two approaches

(bottom).

The first conclusion is the bandpass structures from

both approaches show consistent results at a level of

98%. However, the 2% level of difference between the

two is not negligible as far as the EoR signal is con-

cerned. For each 1.28 MHz sub-band, the frequency

channels near the band edges appear to show relatively

larger differences. The differences in solutions can come

about not only because they are derived with different

algorithms using different assumptions, but also because

they use different subsets of the data to perform the cal-

ibration, i.e., FHD uses data from long baselines, while

OMNICAL uses data from redundant baselines. We will

investigate the effects of this level of difference on EoR

PS measurements in Section 6.

6. COMBINING FHD AND OMNICAL

FHD performs well on calibrating EoR0 data with

a well developed point source catalog (e.g. (Beardsley

et al. 2016; Barry 2018), but it also has shortcomings,

including errors introduced by an incomplete sky model

(Barry et al. 2016) and a loss of sensitivity from exclud-

ing short baselines due to difficulty in modeling diffuse

sources (Patil et al. 2016; Sullivan et al. 2012; Bowman

et al. 2009). OMNICAL is free of sky model error and

is able to calibrate short baselines (although, as noted,

we exclude the shortest 14 m east-west baselines from

redundant calibration because they exhibit significantly

larger scatter than other redundant baseline types), but



10 Li et al.

it cannot solve for the degenerate parameters, and it

can only calibrate a subset of the array. In addition,

OMNICAL has the potential for error introduced by tile

position inaccuracies and beam variation from tile to

tile.

Their respective advantages and disadvantages, how-

ever, suggest that OMNICAL and FHD can be mutually

complementary. We can possibly use the algorithms to

mitigate both sky model and non-redundancy errors.

These two methods also allow us to make use of more

baselines for calibration, since FHD excludes short base-

lines and OMNICAL only can calibrate antennas in the

redundant subset of the array.

With bad tiles excluded (tile 45 and tile 1037 are not

operational in our data set), there are 71 hexagon tiles

and 55 non-hexagon tiles. In FHD calibration, if we only

calibrate baselines longer than 50 wavelengths at 180

MHz, the number of baselines we use is 5653. For the

combined calibration, there are 2477 baselines involved

in redundant calibration, 1235 of them are shorter than

50 wavelengths, thus 6888 baselines can be used in cali-

bration.

In this section, we propose two strategies to combine

FHD with OMNICAL. As our metric for evaluating dif-

ferent approaches, we use the two-dimensional (k⊥, k‖)

power spectrum common to 21 cm EoR analyses.12 A

schematic 2D PS is shown as the upper left plot in Fig-

ure 7. The power in the lower red region in k‖ for all

k⊥ is dominated by the intrinsically spectrally smooth

foregrounds. The instrument chromaticity mixes fore-

ground modes up to higher k‖, forming into a ‘fore-

ground wedge’. The limit of the wedge depends on how

far the sources are from the center of the field of view

and increases on longer baselines (larger k⊥). The solid

line and dashed line represent the horizon limit and the

primary field of view limit, respectively. The remaining

‘EoR window’ is foreground free and expected to contain

a wealth of information about the 21 cm signal (Barry

et al. 2016; Datta et al. 2010; Morales et al. 2012; Vedan-

tham et al. 2012; Parsons et al. 2012b; Trott et al. 2012;

Hazelton et al. 2013; Thyagarajan et al. 2013; Pober

et al. 2013; Liu et al. 2014). In the ‘EoR window’, any

observed excess of power is a contaminant, as the EoR

signal is buried deep in the noise. Our metric of evalu-

ating calibration techniques is to quantify their perfor-

mances of mitigating power contamination in the ‘EoR

12 Our power spectrum estimator (discussed below) uses all
baselines, so it is necessary to combine both FHD and OMNICAL

to get calibration solutions for both the hex and non-hex tiles.
Hence, we do not use the PS metric to compare the independent
solutions from FHD and OMNICAL in the previous section.

Project	Degeneracy

Figure 6. Flow diagram showing the procedure of OFcal.

window’. Not only is this metric the quantity of interest

(a major goal of MWA Phase II is to measure the PS of

the EoR), it also highlights subtle differences between

the calibration schemes due to its inherent sensitivity

to spectral structure which can corrupt EoR measure-

ments.

To create our PS, we use the software package Error

Propagated Power Spectrum with Interleaved Observed

Noise (εppsilon13 which calculates the PS using image

cubes as input with errors propagated through the full

analysis; Jacobs et al. 2016).

6.1. Strategies

We propose two simple strategies to combine OMNICAL

with FHD by running them sequentially: “OMNICAL first,

FHD second” and “FHD first, OMNICAL second.” To sim-

plify, we name OMNICAL first, FHD second as OFcal, and

FHD first, OMNICAL second as FOcal. Since OMNICAL

can only calibrate the subset of the array, no matter

what strategy we propose, these hybrid approaches only

change the calibration on hexagon tiles; the calibration

of non-hexagon tiles remains the same as FHD calibra-

tion results.

6.1.1. OFcal

The OFcal approach is illustrated in the diagram

shown Figure 6. The calibration procedure is as follows:

1. Run OMNICAL on raw visibilities measured by base-

lines within hexagon tiles;

2. Perform FHD calibration on raw visibilities mea-

sured by all baselines longer than 50 wavelengths

at 180 MHz;

3. Average OMNICAL solutions for each pointing (30

minute time average);

13 https://github.com/EoRImaging/eppsilon
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Figure 7. Upper left: schematic plot of 2D cylindrical power spectrum. Low k‖ modes are dominated by intrinsic foregrounds
and the chromaticity of the interferometric instrument smears foregrounds contamination up to high k‖, leaving an ‘EoR window’
which is foreground free. Lower left: PS after FHD calibration. Upper middle: PS after OFcal. Lower middle: PS after FOcal.
Upper right: difference PS of FHD minus OFcal. Lower right: difference PS of FHD minus FOcal. See text for details on the
calibration methods.

4. Project degeneracy parameters of OMNICAL solu-

tions to FHD solutions;

5. Apply degeneracy-projected, time-averaged OMNICAL

solutions to tiles within the hexagons and apply

FHD solutions to all other tiles.

When averaging calibration solutions from a single

pointing, we first make sure this set of solutions have

same degeneracy parameters. We do this by picking one

data file solutions as target, and projecting degeneracy

of solutions from other data files to this target, then

average.

6.1.2. FOcal

The description of FOcal is simpler:

1. Perform FHD calibration on raw visibilities mea-

sured by all baselines;

2. Apply FHD solutions to the raw data;

3. Run OMNICAL on FHD calibrated visibilities (from

baselines within the hexagons);

4. Average OMNICAL solutions for each pointing (30

minute time average);

5. Project degeneracy parameters of OMNICAL solu-

tions to default values of 0;

6. Apply time-averaged OMNICAL solutions to FHD

calibrated data.

Since the data before OMNICAL is already calibrated

by FHD, the degeneracy is removed in a different way.
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By forcing the average of η’s of all tiles to be 0 (simi-

lar to Equation 11, but with FHD terms excluded), the

flux density scale set by FHD does not change, and by

making the linear field Φ have zero slope and setting the

average phase to be 0, the sky center does not change.

More details are described in Appendix A.

The basic difference between OF and FOcal is that

each individual baseline has different weights in these

two cases. When constructing χ2 for lincal, with each

individual term to be |vij − gig∗j yij |2, we will see base-

lines with larger |g| having larger noise level. In OFcal,

to avoid any bias, we weight each vij by the reciprocal

of product of the square root of autocorrelations of tile i

and tile j, which effectively cancels out the gain ampli-

tude differences. In FOcal, since the amplitude calibra-

tion of FHD is already applied before OMNICAL, we do

not apply this weighting. In the noiseless case, we ex-

pect both approaches to yield the same result, but in the

presence of noise the best weighting for these methods

is an open question.

6.2. Results

A PS comparison of OFcal and FOcal with the FHD-

only calibration for the North-South polarization data

is shown in Figure 7. The PS of the data with only

FHD calibration applied is shown in the lower left panel.

The middle column shows the PS of the data with the

two new calibration schemes applied (OFcal on top, and

FOcal on the bottom).

The three PS from FHD, OFcal and FOcal have com-

mon features and are nearly indistinguishable. The hor-

izontal streaks of excess power shown in PS plots are

harmonic modes due to flagged channels between every

1.28 MHz sub-band. The vertical streak at ∼ 12 wave-

lengths is due to sparse sampling in k⊥ space, or in other
words, we do not have baselines sampling those modes.

To illustrate the difference between OFcal (or FOcal)

and FHD, we make difference PS plots shown in the right

hand side of Figure 7. The difference plots (right col-

umn) are obtained by subtracting (in 3D k space) the PS

of data with OFcal applied (upper right) and FOcal ap-

plied (lower right) from that of the FHD-only calibrated

data. In PS difference plots, red indicates an excess of

power in the OFcal (or FOcal) strategy and blue indi-

cates a reduction of power when compared with FHD.

From the difference plot, we can conclude that both

OFcal and FOcal show lower power at sub-band har-

monic modes than FHD. We expect this improvement

at sub-band harmonic modes because the channels near

sub-band gaps seem to show the most tile to tile vari-

ation. OMNICAL is capable of capturing this variation,

while FHD only fits a smooth polynomial functions in

Figure 8. The 2D power spectrum using calibration from
FHD only (Figure 7, lower left) with contours to highlight
modes that will be used for 1D power in k‖ in Figure 10

frequency (after dividing by a cable-averaged bandpass)

to capture tile to tile variation (see Section 3.2). Be-

cause these variations appear on the sub-band scale of

1.28 MHz, FHD cannot calibrate them out as well as

OMNICAL.

To further investigate the PS differences in the EoR

window, we pick regions of k space which are free from

foregrounds and sub-band contaminations in the 3D

power spectrum.14 We illustrate these cuts in Figure 8,

where the contamination we are excluding is evident. To

more clearly demonstrate improvements from the com-

bined calibration technique, we apply this k space cut to

the power spectrum differences shown in Figure 9 and

average in k⊥ to make a 1D power difference versus k‖,

which we show in Figure 10. We have excluded low k‖
modes which are foreground contaminated (dark gray),

as well as sub-band harmonic modes (light gray). Fig-

ure 10 shows that OF/FOcal both show less contamina-

tion than FHD in general (i.e. the differences in Figure

14 Similar selections were used in Beardsley et al. (2016), al-
though we exclude select values of k⊥ where the Phase II baseline
sampling is poorer than in Phase I.
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Figure 9. ps difference plots of FHD minus OFcal (left; Figure 7, upper right), FHD minus FOcal (middle; Figure 7, lower
right) and FOcal minus OFcal (right) with the same contours as Figure 8.

10 are mostly positive). Both hybrid approaches show

better performance at 150 m reflection modes (the ex-

pected k‖ value for a 150 m cable reflection at redshift 7

is marked by the vertical dot-dashed line; (Ewall-Wice

et al. 2016)). We can also see some improvements near

the 230 m cable reflection mode marked by the vertical

dashed line.

We also see that both OFcal and FOcal have strikingly

similar differences with FHD (i.e. the two difference

PS in the right-hand side of Figure 7 are very similar),

although they are not identical. A difference PS plot of

FOcal minus OFcal is shown in Figure 9 on the right,

and the 1D version of this PS difference is shown in

Figure 10 (green). We conclude the differences between

OFcal and FOcal are centered around zero and much

less significant overall.

We note that in all cases, these differences are below

the thermal noise level in our measurements. However,

in creating these difference power spectra, we are sub-

tracting the same data — with the exact same realiza-

tion of the noise — only with different calibrations ap-

plied. If the calibrations were the same, the differences

would be identically zero. Since the goal of these exper-

iments is to detect the 21 cm signal from the EoR, the

typical amplitude of the EoR signal — approximately

106 mK2h−3Mpc3 at k ∼ 0.1 hMpc−1 (Furlanetto et al.

2006; Mesinger et al. 2011) — provides a rough scale for

assessing the significance of our improvements. Using re-

dundant calibration in addition to FHD (either through

FOcal or OFcal) removes foreground contamination at

or above the level of the EoR signal. The differences be-

tween FOcal and OFcal are much smaller and are thus

unlikely to be significant for EoR experiments.

7. DISCUSSION

Section 6.2 has shown that our hybrid approaches

(OF/FOcal) can improve the power spectrum in the

EoR window. The intuition for this improvement is that

tiles in the two hexagons were calibrated based on re-

dundant baseline assumption, thus all non-degenerate

parameters are then free from the sky model error de-

scribed in Barry et al. (2016). The 4 degenerate parame-

ters per frequency channel per time per polarization still

are sky model dependent, but overall, we expect to have

mitigated the error introduced by imperfect sky model.

Additionally, FHD only uses long baselines for calibra-

tion, which could potentially overfit gain parameters to

noises in long baseline data; however, we are more in-

terested in short baseline data in EoR observations, and

we expect OF/FOcal to mitigate this effect by including
short baselines in calibration. Although we are ignoring

crosstalk and ionospheric effects in this work, all cali-

bration methods work on the same data and therefore

have the same challenges and that nonetheless a noise

power reduction was achieved by our hybrid approach.

So far we have not considered systematic errors that

can affect OMNICAL. Redundant calibration is based on

two assumptions: that redundant baselines have the ex-

act same length and orientation and that all tile beams

are identical. These two assumptions are not exactly

true in practice. According to MWA Phase II base-

line coordinates, position deviations from perfect redun-

dancy is relatively small (at a level of 5 cm). We have

performed noiseless foreground simulations to study the

effect of systematic errors introduced through redundant

calibration using the imperfect tile positions of Phase II.

As we see in the simulated data, the so called ‘redun-
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Figure 10. 1D difference power spectrum versus k‖ made from the subset of modes illustrated in Figure 9. Blue: FHD only
minus OFcal; Orange: FHD only minus FOcal; Green: FOcal minus OFcal. The dark gray shaded region indicates low k
modes which are foreground contaminated; the light gray shaded regions are sub-band harmonic modes we cut out. The vertical
dash-dot line and dashed lines highlight the 150 m and 230 m cable reflection modes, respectively.

dant’ visibilities are not identical, but we assume they

are when we do calibration. We found the errors intro-

duced to the power spectrum by the ‘wrong’ redundancy

assumption are unbiased as well as below the typical

EoR level by 2 orders of magnitude. Beam variation can

also be significant. It is also a possible cause for large

systematic disagreement for baseline type (1001,1002)

(East-West 14-meter-baselines) we saw in this data. In

future work, we will explore the error introduced by both

effects through detailed calibration simulations, similar

to Barry et al. (2016).

In our analysis, we performed OMNICAL on each data

file after averaging it over time axis (2 minutes), which

gives better SNR in calibration and allows us to con-

veniently avoid flagged samples. However, there is a

concern of washing signals out for relatively long base-

lines. We investigated three averaging scenarios through

noiseless foreground simulations using real baseline coor-

dinates where there are no flagged samples: calibrating

visibilities each 2 second interval, then directly applying

these solutions to the data; averaging calibration solu-

tions derived for each 2 second interval over 2 minutes,

then applying the time-averaged solutions to the data;

and, most similar to the analysis performed here, av-

eraging 2 minutes of data, then calibrating using the

averaged data and applying these to the un-averaged

data. By evaluating the power spectrum as we did in

Section 6.2, we conclude none of the three scenarios show

bias relative to others, and the amplitudes of differences

among them are 3 orders of magnitudes lower than the

typical EoR level. This validates our averaging strategy

used in redundant calibration in the real data.

8. CONCLUSION
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We have explored the application of both sky-based

calibration and redundant calibration to data from

Phase II of the MWA, and investigated their respective

trade-offs and possible complementarity. Sky calibra-

tion is model dependent and a reasonable calibration

requires a fairly good model of the radio sky. The sky

model, as well as the beam model, cannot be perfect to

a certain level. Errors such as wrong source positions,

brightness errors, or missing sources, can potentially in-

troduce calibration error to the PS (Barry et al. 2016).

In addition, since the sky model in FHD is a point source

catalog, and it is difficult to model diffuse sources, the

short baselines are omitted (Sullivan et al. 2012; Patil

et al. 2016; Bowman et al. 2009), which leads to a loss

of information of those baselines in calibration. Re-

dundant calibration provides an opportunity to remedy

these shortcomings: it is sky model independent, thus it

is not restricted by baseline length. However, redundant

calibration leaves 4 intrinsic degeneracy parameters un-

solved. In addition, redundant calibration may also be

contaminated by tile position error and beam variation

(Liu et al. 2010). Section 6.2 shows using redundant

calibration and sky-based calibration together can al-

leviate the potential error introduced by assumptions

these two approaches made. We aim to make use of the

advantages of both calibration approaches and combine

them together to improve our calibration.

In this paper, we have shown the success of OMNICAL

on ORBComm observations from MWA Phase II, and

compared OMNICAL and FHD on EoR0 data, showing

consistent results from these two approaches. This is

the first time these two independent methods have been

confirmed to agree in real data calibration. We fur-

ther attempted to combine FHD with OMNICAL in two

ways: OMNICAL first, FHD second (OFcal), and FHD

first, OMNICAL second (FOcal). By comparing them

with FHD in PS scheme, we conclude both OFcal and

FOcal show improved behavior in the k modes with the

most EoR sensitivity in the power spectrum, especially

in modes contaminated by 150 m and 230 m cable re-

flections.

This result substantially improves on similar compar-

isons in the literature. Noorishad et al. (2012) use re-

dundancy between individual dipole elements within a

LOFAR phased-array tile, but the array has little to no

redundancy between tiles. Nikolic et al. (2017) use a

point-source model for the Galactic center to calibrate

the 19-element, highly redundant HERA commissioning

array, but they present no comparisons with redundant

calibration methods. When the complete 350-element

HERA is finished, however, it will be a valuable tool

for performing studies similar to the one presented here

(Dillon & Parsons 2016).
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APPENDIX

A. DEGENERACY PROJECTION

Section 3.3.2 describes the 4 intrinsic degeneracy parameters per polarization per frequency per time in redun-

dant calibration. In this section, we describe details about how we treat these degeneracy parameters in redundant

calibration for MWA Phase II data.

The degeneracy projection (DP) technique introduced in our work is a process where we look for the best fit

4 degeneracy parameters for input solutions (e.g., OMNICAL solutions) that makes them comparable to the target

solutions (e.g., FHD solutions).

We perform DP in two cases. First, redundant calibration cannot provide a correct answer for these degeneracy

parameters, necessitating an absolute calibration after OMNICAL. We do this by projecting OMNICAL solutions in the

https://github.com/HERA-Team/hera_cal
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degenerate space to FHD solutions because FHD is our best guess about the sky information. The other case is when

we are averaging OMNICAL solutions from a set of adjacent observations (here an observation refers to a single 112 second

file), the degeneracy parameters may vary slightly from observation to observation. Simply averaging solutions with

inconsistent degeneracy parameters can bias the average in an unknown direction. We pick one observation’s solutions

to be the target solutions, and project degeneracy of other observation solutions to this target before averaging them.

A.1. Degeneracy description

DP for gain amplitudes is straightforward. The η’s of the input solutions are chosen to have the same average over

all tiles as that of target solutions per polarization per frequency.

As we mentioned in section 5.1, there are 3 degeneracy parameters in phase. There is actually one extra phase offset

degeneracy parameter for MWA Phase II array. Since there is no inter-hexagon tile sharing the same baseline type as

any intra-hexagon baseline, adding a uniform phase offset to gains of all tiles in one of the hexagons does not break

any visibility redundancy. Thus the offset terms ψ are treated separately for north hexagon (ψN ) and south hexagon

(ψS), while the phase slope ~Φ is the same for both hexagons.

To solve for these phase parameters, as mentioned in section 5.1, we can fit a plane in (x, y,∆Ψ) space, where ∆Ψ

is the phase difference between the input gain solutions and target gain solutions.

∆Ψi = Φxxi + Φyyi + ψ (A1)

However, when we difference the phase between two complex numbers, the outcome can have a 2π ambiguity, i.e., a

phase wrap. If the phase wrapping happens frequently, we are not able to directly fit a plane as Equation A1.

A.2. DP without phase wrapping

We first consider the case where there is no phase wrapping. Practically, this case occurs in two places in our

analysis. First, when we do FOcal, we are running OMNICAL on FHD calibrated data. If FHD were to calibrate it

again, it should return ones as the solutions (i.e. no calibration needed). Thus DP in FOcal is equivalent to projecting

OMNICAL solutions to ones, or in other words, we do not want OMNICAL to add extra non-zero values to degeneracy

parameters which have already been calibrated by FHD. Since in this case OMNICAL is looking for solutions around 1.0,

the phase differences between OMNICAL solutions and 0.0 are small, so there is no phase wrapping.

The second place where phase wrapping is not an issue is when comparing OMNICAL solutions from adjacent obser-

vations. These solutions are very similar to each other, and when we do DP between close solutions, we do not have

to worry about phase wrapping. It is safe to directly apply plane fitting.

To calculate the best fit for Equation A1, we minimize the quantity in Equation A2:

χ2 =
∑
iN

(∆ΨiN − ΦxxiN − ΦyyiN − ψN )2

+
∑
iS

(∆ΨiS − ΦxxiS − ΦyyiS − ψS)2,
(A2)

where iN is the tile index in north hexagon and iS is the tile index in south hexagon. An example of fitting result in

FOcal at a single frequency single polarization is shown in Figure 11.

A.3. DP with phase wrapping

Now we discuss the case where phase wrapping shows up frequently. This happens when we do OFcal. We project

OMNICAL solutions on raw data to FHD solutions. The phase difference between OMNICAL and FHD is normally large.

We have to unwrap the phase in 2 dimensions before plane fitting, which is challenging. Instead of directly fitting a

plane, we choose to calculate a rough value of these phase parameters and remove them so that we have a close answer

to our target, then apply our method in section A.2.

The first step is to remove the ψ terms for both hexagons by setting tile 1001 as the reference tile for north hexagon

and setting tile 1072 as the reference tile for south hexagon. For each observation, the input phase solution of the

reference tile is shifted to the target phase solution of that tile in the reference observation, and simultaneously the

phases of all other tiles in the corresponding hexagon sub-array are shifted by the same amount. In addition, the

reference tile functions as the origin for each hexagon sub-array, i.e., any tile position vector in that sub-array ~ri



Comparing Redundant and sky-based calibration 17

Figure 11. An example of plane fitting in FOcal. Red dots represents the OMNICAL phase solutions (or equivalently, its difference
from 0) at a single frequency single polarization versus ideal tile positions. x and y axes represents East-West positions and
North-South positions, respectively, and z axis represents the phase (in radians). The two planes are fitted results. These two
planes have the same ~Φ but different phase offset.

originates from the reference tile, i.e., ~ri = ~r′i−~r′reference, thus ψN and ψS vanish at this point. The phase degeneracy

reduces to ~Φ · ~ri.
By removing the phase offset terms for both hexagons, we only left with two degeneracy parameters in ~Φ. To

illustrate the fitting for ~Φ, we select two basis vectors to describe the tile positions:

~a1 = 14x̂

~a2 = −7x̂− 7
√

3ŷ
(A3)

where x̂ represents a vector pointing East direction with a length of 1 meter, and ŷ represents a vector pointing to

North direction with a length of 1 meter. Any tile location can be represented as:

~ri = n1i~a1 + n2i~a2 (A4)

Where n1i and n2i are integers (see Figure 2 for tile positions). Note here ~ri originates from tile 1001 for North

hexagon, and tile 1072 for South hexagon. To illustrate the phase slope ~Φ, we use the basis shown in Equation A5:

~b1 =
ẑ × ~a2

ẑ · (~a2 × ~a1)

~b2 =
~a1 × ẑ

ẑ · (~a2 × ~a1)

(A5)

where ẑ is a unit vector perpendicular to the plane of the array. Thus we have

~ai ·~bj = δij (A6)
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~Φ is represented as:
~Φ = α1

~b1 + α2
~b2 (A7)

The two components of ~Φ are parameterized as α1 and α2. There is no cross term in dot product of ~Φ and ~ri, as

Equation A8 shows.
~Φ · ~ri = α1n1i + α2n2i (A8)

As we know unwrapping phase in two dimensions is difficult, but unwrapping phase in one dimension is easier to do.

The reason we choose A3 as position basis and A5 as phase slope basis is we want to pick two non-parallel directions,

which are ~a1 and ~a2 in tile position space, and do one dimensional phase unwrapping and fitting in these two directions

separately. The corresponding phase slope in ~a1 and ~a2 are α1 and α2, respectively. Although there is also degeneracy

for αi (αi + 2πN , where N is an integer, is also a solution), by evaluating Equation A8, any 2π wrap should vanish

because the wrapping term gets multiplied by an integer; thus the final result is unique.

After a rough estimation of degeneracy parameters is solved in this fashion, we apply them to the input solution.

At this point the input solutions and target solutions are close. To get a finer solution, we further do a plane fitting

as in Section A.2.

B. OMNICAL CONVERGENCE

The OMNICAL package has shown good computational efficiency in redundant calibration. However, we have discov-

ered a convergence issue of lincal in OMNICAL. In our work, we have done tests on convergence by using different

starting points for calibration. Ideally, the solution to the least square problem in lincal should converge to the same

answer regardless of what starting points we give it. However, OMNICAL only converges to a level of 0.1% in our data

set. This level of uncertainty is above the EoR signal.

In this work, we have solved this issue and have solutions converged to machine precision. All our results presented

in this paper do not have this problem.

As an example of different starting points for OMNICAL, we can use different baseline groups in firstcal, which

yields the same phase slopes but different phase offset results. This in turn leads to different results from logcal,

thus we have different starting points for lincal. Not only we can use firstcal to get an initial guess for the phase

solutions, but also we can implement a rough calibration method introduced by (Zheng et al. 2016), which we call

roughcal. The relation between the phase of true visibilities, data, and gains is given by Equation 12. If we know the

phases of true visibilities for baseline type (1001,1005) (θ1001,1005) and type (1001,1006) (θ1001,1006) (see Figure 2 for

information of baseline types), and φ1001, we are able to solve for φ1005 and φ1006. With φ1005 and φ1006 solved, we

can move forward to solve for φ1002, φ1010, φ1011 and φ1012, and so on and so forth. This guarantees us to cover all

tiles across this sub-array. With this incomplete information, i.e., only the data from two types of baselines, we are

able to get a rough guess for phase solutions per tile. The starting point for this process is the knowledge of θ1001,1005,

θ1001,1006 and φ1001. We are actually free to choose these three parameters because of the phase degeneracy. The

most straightforward choice is θ1001,1005 = γ1001,1005, θ1001,1006 = γ1001,1006, and φ1001 = 0, where γij is as defined in
Equation 12.

Using either different baseline subsets for firstcal or using roughcal instead of firstcal has the same effect:

different starting points for OMNICAL. After calibration using any two sets of different starting points, we use the

degeneracy projection approach to force these two sets of solutions to have the same degeneracy parameters. By

comparing these two sets of results, we see a level of 0.1% of difference in real data calibration. This level of calibration

uncertainty is significant because a fraction 10−3 of foregrounds is still brighter than the EoR signal.

In the algorithmic implementation of OMNICAL available at https://github.com/jeffzhen/omnical, the lincal iteration

solves the least squares problem by taking partial derivatives of χ2 given by Equation B9 with respect to each individual

parameter, forcing each partial derivative to be 0 to solve for the corresponding parameter, updating the solutions by

a weighted average between the solutions from previous iteration and the new solutions.

χ2 =
∑
ij

|vij − gigj∗yij |2 (B9)

This algorithm is equivalent to iterating along the parameters axes, which is not as robust as approaching the local

minimum along the real gradient in the parameter space.

To solve for the local minimum of χ2, we add an extra step to obtain a finer convergence. We write Equation 8

into a matrix form as Equation B10 (Liu et al. 2010), where d is a 2Nredundant baselines dimensional vector, x is a

https://github.com/jeffzhen/omnical
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2Nunique baselines+2Ntiles dimensional vector, and A is a 2Nredundant baselines×(2Nunique baselines+2Ntiles) dimensional

matrix.


<(vij − g0i g0j

∗
y0ij)

=(vij − g0i g0j
∗
y0ij)

...


︸ ︷︷ ︸

≡d

=


<(g0j

∗
y0ij) −=(g0j

∗
y0ij) <(g0i y

0
ij) =(g0i y

0
ij) · · · <(g0i g

0
j
∗
) −=(g0i g

0
j
∗
) · · ·

=(g0j
∗
y0ij) <(g0j

∗
y0ij) =(g0i y

0
ij) −<(g0i y

0
ij) · · · =(g0i g

0
j
∗
) <(g0i g

0
j
∗
) · · ·

...
...

...
...

. . .
...

... · · ·


︸ ︷︷ ︸

≡A



<(∆gi)

=(∆gi)

<(∆gj)

=(∆gj)
...

<(∆yij)

=(∆yij)
...


︸ ︷︷ ︸

≡x
(B10)

The solution to x is given by Equation B11 (Liu et al. 2010):

x = (ATA)+AT d, (B11)

where the ‘+’ sign denotes Moore-Penrose pseudo-inverse. This step is more computationally expensive not only

because the matrix A is large, but also it needs to be updated and find the pseudo-inverse per iteration for each time

and frequency sample. In our calibration, we run OMNICAL first, followed by this new step to get solutions to converge.

The difference in solutions from different starting points is reduced to machine precision. Although we have made

this approach work within a reasonable amount of time for MWA Phase II data, this method is still not time efficient

enough. For future experiments with redundant array such as Hydrogen Epoch of Reionization Array (HERA; (DeBoer

et al. 2017)), this matrix is much larger than that of MWA Phase II, thus higher efficiency in redundant calibration is

desired. We will further explore a better approach in future work.
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