50 research outputs found
Edge Impulse: An MLOps Platform for Tiny Machine Learning
Edge Impulse is a cloud-based machine learning operations (MLOps) platform
for developing embedded and edge ML (TinyML) systems that can be deployed to a
wide range of hardware targets. Current TinyML workflows are plagued by
fragmented software stacks and heterogeneous deployment hardware, making ML
model optimizations difficult and unportable. We present Edge Impulse, a
practical MLOps platform for developing TinyML systems at scale. Edge Impulse
addresses these challenges and streamlines the TinyML design cycle by
supporting various software and hardware optimizations to create an extensible
and portable software stack for a multitude of embedded systems. As of Oct.
2022, Edge Impulse hosts 118,185 projects from 50,953 developers
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Crop Updates 2005 - Lupins and Pulses
This session covers sixty five papers from different authors:
1. 2004 LUPIN AND PULSE INDUSTRY HIGHLIGHTS, Peter White Department of Agriculture
2. BACKGROUND, Peter White Department of Agriculture
2004 REGIONAL ROUNDUP
3. Northern Agricultural Region, Martin Harries, Department of Agriculture
4. Central Agricultural Region, Ian Pritchard, Department of Agriculture
5. Great Southern and Lakes, Rodger Beermier, Department of Agriculture
6. Esperance Port Zone, Mark Seymour, Department of Agriculture, and David Syme, The Grain Pool of WA
LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT
7. Lupin, Martin Harries, Department of Agriculture
8. Narrow-leafed lupin breeding, Bevan Buirchell, Department of Agriculture
9. Yellow lupin breeding in Western Australia, Kedar Adhikari, Mark Sweetingham and Bevan Buirchell, Department of Agriculture
10. WALAB2000 - First Anthracnose resistant albus lupins, Kedar Adhikari, Bevan Buirchell, MarkSweetingham and Geoff Thomas, Department of Agriculture
11. Improving lupin grain quality and yield through genetic manipulation of key physiological traits, Jon Clements1 and Bevan Buirchell2,1CLIMA, The University of Western Australia 2Department of Agriculture
12. Lupin alkaloids in four Australian species, Shao Fang Wang, Chemistry Centre (WA), CLIMA, The University of Western Australia
13. Improving lupin tolerance to herbicides of metribuzin, isoxaflutole and carfentrazone-ethyl, Ping Si1, Mark Sweetingham12, Bevan Buirchell12, David Bowran2 and Huaan Yang12 , 1CLIMA, The University of Western Australia, 2Department of Agriculture
14. Combined cultural and shielded sprayer herbicide application for weed management, Martin Harries and Mike Baker Department of Agriculture
15. Field testing of lupin seed of various sources with and without post maturity, pre harvest rain for field establishment, Martin Harries, Wayne Parker, Mike Baker, Department of Agriculture
16. Lupin seed rate by wide row spacing, Martin Harries, Bob French, Damien Owen D’arcy, Department of Agriculture
17. How environment influences row spacing response in lupins, Bob French, Department of Agriculture
18. The effect of wider row spacing on lupin architecture, growth and nutrient uptake dynamics, Bill Bowden and Craig Scanlan, Department of Agriculture
19. Fertiliser placement and application rate in wide rows, Martin Harries, Damien Owen D’arcy, Department of Agriculture
20. The pros and cons of cowing lupins in ‘wide’ rows, Wayne Parker, Bob French and Martin Harries, Department of Agriculture
21. Investigation into the influence of row orientation in lupin crops, Jeff Russell1 and Angie Roe2, 1Department of Agriculture, 2Farm Focus Consultants
22. Making the most of Mandelup, Greg Shea and Chris Matthews, Department of Agriculture
23. The effect of wild radish density and lupin cultivars on their competition at Merredin, Shahab Pathan, Abul Hashem and Bob French, Department of Agriculture
24. The potential of pearl lupin (Lupinus mutabilis) for southern Australia, Jon Clements1, Mark Sweetingham2, Bevan Buirchell2, Sofia Sipsas2, Geoff Thomas2, John Quealy1, Roger Jones2, Clive Francis1, Colin Smith2 and Gordon Francis1, 1CLIMA, University of Western Australia 2Department of Agriculture
25. Field pea, Mark Seymour, Department of Agriculture
26. Breeding highlights, Tanveer. Khan and Bob French, Department of Agriculture
27. Variety evaluation, Tanveer Khan, Kerry Regan, Jenny Garlinge and Rod Hunter, Department of Agriculture
28. Large scale field pea variety trials, Martin Harries, Department of Agriculture
29. Kaspa demonstrations, Rodger Beermier, Mark Seymour, Ian Pritchard, Graham Mussell, Department of Agriculture
30. Field pea harvesting demonstration at Merredin, Glen Riethmuller, Greg Shea and Bob French, Department of Agriculture
31. Does Kaspa respond differently to disease, fungicides, time of sowing or seed rate, Mark Seymour, Department of Agriculture
32. Field pea response to foliar Manganese in mallee district, Mark Seymour, Department of Agriculture
33. Kaspa harvesting observations 2004, Mark Seymour, Ian Pritchard, Glen Riethmuller, Department of Agriculture
34. ‘Blackspot Manager’ for understanding blackspot of peas and ascochyta blight management, Moin Salam and Jean Galloway, Department of Agriculture
35. 250,000 ha of field pea in WA – Is it sustainable? Larn McMurray1 and Mark Seymour2, 1South Australian Research and Development Institute, 2Department of Agriculture
36. Desi chickpea, Wayne Parker, Department of Agriculture
37. Breeding highlights, Tanveer Khan1,2 and Kadambot Siddique2,1Department of Agriculture, 2CLIMA, The University of Western Australia
38. Variety evaluation, Tanveer Khan, Kerry Regan, Jenny Garlinge and Rod Hunter, Department of Agriculture
39. Large scale variety testing of desi chickpeas, Martin Harries, Greg Shea, Mike Baker, Dirranie Kirby, Department of Agriculture
40. Desi variety chickpea trial, Martin Harries and Murray Blyth, Department of Agriculture
41. Seeding rates and row spacing of chickpea desi, Martin Harries, MurrayBlyth, Damien Owen D’arcy, Department of Agriculture
42. Molecular characterisation of chickpea wild relatives, Fucheng Shan, Heather Clarke and Kadambot Siddique, CLIMA, The University of Western Australia
43. Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea, Madeleine Wouterlood, Hans Lambers and Erik Veneklaas, The University of Western Australia
44. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia
45. ‘Kimberly Large’ A high quality and high yielding new variety for the Ord River Irrigation Area, Kerry Regan1,2, Kadambot Siddique2, Peter White1,2, Peter Smith1 and Gae Plunkett1,1Department of Agriculture, 2CLIMA, University of Western Australia
46. Development of ascochyta resistant and high quality varieties for Australia, Kadambot Siddique1, Kerry Regan1,2, Tim Pope1 and Mike Baker2, 1CLIMA, The University of Western Australia 2Department of Agriculture
47. Towards double haploids in chickpeas and field pea, Janine Croser, Julia Wilson and Kadambot Siddique, CLIMA, The University of Western Australia
48. Crossing chickpea with wild Cicer relatives to introduce resistance to disease and tolerance to environmental stress, Heather Clarke and Kadambot Siddique, CLIMA, The University of Western Australia
49. Faba bean, Peter White, Department of Agriculture
50. Germplasm evaluation, Peter White1,2, Kerry Regan1,2, Tim Pope2, Martin Harries1, Mark Seymour1, Rodger Beermier1 and Leanne Young1, 1Department of Agriculture, 2CLIMA, The University of Western Australia
51. Lentil, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia
52. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Martin Harries1, Murray Blyth1 and Michael Materne3, 1Department of Agriculture, 2CLIMA, University of Western Australia, 3Department of Primary Industries, Victoria
53. Lathyrus species, Kadambot Siddique1, Kerry Regan2, and Colin Hanbury2, 1CLIMA, the University of Western Australia, 2Department of Agricultur
A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants
Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models
Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection
IMPORTANCE: SARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals.
OBJECTIVE: To develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections.
DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling.
EXPOSURE: SARS-CoV-2 infection.
MAIN OUTCOMES AND MEASURES: PASC and 44 participant-reported symptoms (with severity thresholds).
RESULTS: A total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%]) were PASC positive at 6 months.
CONCLUSIONS AND RELEVANCE: A definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC
Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study
Introduction: Consensus criteria for pediatric severe sepsis have standardized enrollment for research studies. However, the extent to which critically ill children identified by consensus criteria reflect physician diagnosis of severe sepsis, which underlies external validity for pediatric sepsis research, is not known. We sought to determine the agreement between physician diagnosis and consensus criteria to identify pediatric patients with severe sepsis across a network of international pediatric intensive care units (PICUs). Methods: We conducted a point prevalence study involving 128 PICUs in 26 countries across 6 continents. Over the course of 5 study days, 6925 PICU patients <18 years of age were screened, and 706 with severe sepsis defined either by physician diagnosis or on the basis of 2005 International Pediatric Sepsis Consensus Conference consensus criteria were enrolled. The primary endpoint was agreement of pediatric severe sepsis between physician diagnosis and consensus criteria as measured using Cohen's ?. Secondary endpoints included characteristics and clinical outcomes for patients identified using physician diagnosis versus consensus criteria. Results: Of the 706 patients, 301 (42.6 %) met both definitions. The inter-rater agreement (? ± SE) between physician diagnosis and consensus criteria was 0.57 ± 0.02. Of the 438 patients with a physician's diagnosis of severe sepsis, only 69 % (301 of 438) would have been eligible to participate in a clinical trial of pediatric severe sepsis that enrolled patients based on consensus criteria. Patients with physician-diagnosed severe sepsis who did not meet consensus criteria were younger and had lower severity of illness and lower PICU mortality than those meeting consensus criteria or both definitions. After controlling for age, severity of illness, number of comorbid conditions, and treatment in developed versus resource-limited regions, patients identified with severe sepsis by physician diagnosis alone or by consensus criteria alone did not have PICU mortality significantly different from that of patients identified by both physician diagnosis and consensus criteria. Conclusions: Physician diagnosis of pediatric severe sepsis achieved only moderate agreement with consensus criteria, with physicians diagnosing severe sepsis more broadly. Consequently, the results of a research study based on consensus criteria may have limited generalizability to nearly one-third of PICU patients diagnosed with severe sepsis
Researching COVID to Enhance Recovery (RECOVER) Adult Study Protocol: Rationale, Objectives, and Design
IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.
METHODS: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.
DISCUSSION: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options
Data from: Plant controls on Late Quaternary whole ecosystem structure and function
Plants and animals influence biomass production and nutrient cycling in terrestrial ecosystems; however their relative importance remains unclear. We assessed the extent to which mega-herbivore species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Britain and Ireland, when two-thirds of the region’s mega-herbivore species went extinct. Warmer temperatures, plant-soil and plant-plant interactions, and reduced burning contributed to the expansion of woody plants and declining nitrogen availability in our five study ecosystems. Shrub biomass in particular was consistently one of the strongest predictors of ecosystem change, equaling or exceeding the effects of other biotic and abiotic factors. In contrast, there was relatively little evidence for mega-herbivore control on plant community composition and nitrogen availability. The ability of plants to determine the fate of terrestrial ecosystems during periods of global environmental change may therefore be greater than previously thought
Jeffers et al Plant controls on LQ eco structure and function Model Data 27Nov17
Pollen, Sporormiella and charcoal influx, bulk sediment stable nitrogen isotopes and reconstructed mean July air temperature data presented in Fig. 2, Fig. 3 and Supplementary Fig. 8