15 research outputs found

    Forest disturbance increases functional diversity but decreases phylogenetic diversity of an arboreal tropical ant community

    Get PDF
    Tropical rainforest trees host a diverse arthropod fauna that can be characterised by their functional diversity (FD) and phylogenetic diversity (PD). Human disturbance degrades tropical forests, often coinciding with species invasion and altered assembly that leads to a decrease in FD and PD. Tree canopies are thought to be particularly vulnerable, but rarely investigated. Here, we studied the effects of forest disturbance on an ecologically important invertebrate group, the ants, in a lowland rainforest in New Guinea. We compared an early successional disturbed plot (secondary forest) to an old‐growth plot (primary forest) by exhaustively sampling their ant communities in a total of 852 trees. We expected that for each tree community (1) disturbance would decrease FD and PD in tree‐dwelling ants, mediated through species invasion. (2) Disturbance would decrease ant trait variation due to a more homogeneous environment. (3) The main drivers behind these changes would be different contributions of true tree‐nesting species and visiting species. We calculated FD and PD based on a species‐level phylogeny and 10 ecomorphological traits. Furthermore, we assessed by data exclusion the influence of species, which were not nesting in individual trees (visitors) or only nesting species (nesters), and of non‐native species on FD and PD. Primary forests had higher ant species richness and PD than secondary forest. However, we consistently found increased FD in secondary forest. This pattern was robust even if we decoupled functional and phylogenetic signals, or if non‐native ant species were excluded from the data. Visitors did not contribute strongly to FD, but they increased PD and their community weighted trait means often varied from nesters. Moreover, all community‐weighted trait means changed after forest disturbance. Our finding of contradictory FD and PD patterns highlights the importance of integrative measures of diversity. Our results indicate that the tree community trait diversity is not negatively affected, but possibly even enhanced by disturbance. Therefore, the functional diversity of arboreal ants is relatively robust when compared between old‐growth and young trees. However, further study with higher plot‐replication is necessary to solidify and generalise our findings

    Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient

    Get PDF
    In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.publishedVersio

    Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation

    Get PDF
    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data

    Flow diagram of the consecutive methodological steps.

    No full text
    <p>Upper left corner—in each plot species are ordered by their relative abundance and FD index is calculated for each plot of a community. Upper right corner—0.5% of the species relative abundance is removed in consecutive steps, starting with the least abundant species and FD index is then calculated again for each plot at each reduction step. Upper middle columns—plots are ranked based on the values of the FD index and the ranks of original data and data at each reduction step are correlated. Figure in the middle—regression slopes from fitting the linear model represent the robustness of FD index to missing trait data; in this example FD index is (A) less robust and (B) more robust to missing trait data (example RaoQ on head length of ants).</p

    Effect of sampling scenario on FD index sensitivity.

    No full text
    <p>Barplots showing the results of linear mixed effects model, specifically the effect of the two sampling scenarios on the sensitivity of indices for three different types of organisms. The more negative the regression slope, the more sensitive the particular index is to missing trait information. The error bars denote the 95% confidence intervals. (A) plant community (n = 12 plots), (B) ant community (n = 58 plots), and (C) bird community (n = 8 plots).</p

    Effect of trait transformation on FD index sensitivity.

    No full text
    <p>The effect of trait transformation on the improvement in slope (transformed—untransformed trait data)—the bigger the improvement in slope, the more robust the index becomes to missing trait data (y axis). The right panels illustrate the different improvements in trait skewness, depicting examples of trait distribution before and after transformation, which correspond to the x axis of the main figure (matching colours).</p

    Effect of sampling method and abundance transformation on FD index sensitivity.

    No full text
    <p>Barplot depicting the results of linear mixed effects models, specifically the interaction between abundance transformation and the different abundance measures used in plant ecology (all three abundance measures were used for the same plant dataset in order to make their effects comparable). The effect of down-weighting the dominant species by log-transformation of their abundance was most pronounced in the biomass abundance measure. When log transformed, all three sampling methods have a very similar effect on the sensitivity of indices to missing trait data. Error bars denote the 95% confidence intervals.</p

    Effect of abundance transformation on FD index sensitivity.

    No full text
    <p>Barplots showing the results of linear mixed effects models, specifically the effect of the abundance transformation on the slopes for the three different types of organisms. The more negative the regression slope, the more sensitive the particular index is to missing trait information. The error bars denote the 95% confidence intervals. (A) plant community (n = 12 plots), (B) ant community (n = 58 plots), and (C) bird community (n = 8 plots). The right panels depict dominance-diversity curves for the respective organism dataset before and after log-transformation.</p
    corecore