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Both the abiotic environment and the composition of animal and plant com-

munities change with elevation. For mutualistic species, these changes are

expected to result in altered partner availability, and shifts in context-

dependent benefits for partners. To test these predictions, we assessed the

network structure of terrestrial ant-plant mutualists and how the benefits to

plants of ant inhabitation changed with elevation in tropical forest in Papua

New Guinea. At higher elevations, ant-plants were rarer, species richness of

both ants and plants decreased, and the average ant or plant species interacted

with fewer partners. However, networks became increasingly connected and

less specialized, more than could be accounted for by reductions in ant-

plant abundance. On the most common ant-plant, ants recruited less and

spent less time attacking a surrogate herbivore at higher elevations, and

herbivory damage increased. These changes were driven by turnover of

ant species rather than by within-species shifts in protective behaviour.

We speculate that reduced partner availability at higher elevations results

in less specialized networks, while lower temperatures mean that even for

ant-inhabited plants, benefits are reduced. Under increased abiotic stress,

mutualistic networks can break down, owing to a combination of lower

population sizes, and a reduction in context-dependent mutualistic benefits.

1. Introduction
The structure and composition of plant and animal communities are affected by

both the biotic and the abiotic environment [1]. Every species is involved in a

myriad of beneficial, antagonistic and neutral interactions with multiple other

species, and the strength and direction of these interactions is often dependent on

the environmental context [1]. Beneficial interactions are widespread, abundant

and important in the structuring of communities [2] to the extent that they can deter-

mine the geographical ranges of species [3] owing to the context-dependent costs

and benefits for the species involved [4]. Climatic context may be particularly

important in determining the strength of these mutualistic interactions [5]. Shifts

in mutualistic interaction networks in relation to latitude are well known, with inter-

actions being less specialized in the tropics owing to high diversity of plant partner

species, which in turn may be related to climate [6]. Examining the distribution of

mutualistic species over natural temperature gradients on mountains is the next

step towards understanding how climate can shape these networks, and potentially

allows comparisons in responses between latitudinal and altitudinal gradients [7,8].

Among the best-studied mutualistic networks are ant–plant mutualisms [9],

the outcomes of which can be highly context-dependent [10]. Hence, these inter-

actions are particularly interesting to study in relation to shifts in the abiotic

provided
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environment. Ant-plants, or myrmecophytes, provide ants

with nesting space or food rewards such as extra-floral nec-

taries (EFNs) and protein-rich food bodies, in return for

protection against herbivores or trimming of encroaching veg-

etation [9]. In some cases, symbiotic ants can also provide

nitrogen for plants through absorption of ant waste [11,12].

In the tropics, where ants are most diverse and numerous,

these mutualisms become more common, with greater inci-

dence of both EFN-bearing plants [13] and those with

structures to house ant colonies (domatia) [14]. The costs and

benefits to plants of hosting ants or providing food rewards

can depend on biotic factors such as herbivory pressure, or

the identity of the colonizing ant species, which can vary in

their effectiveness of protection [15], and on abiotic factors

such as light or nutrient limitation [16,17]. As such, the strength

of the mutualism is expected to depend on the selective

pressures facing the plant, which are affected by the environ-

ment. If costs outweigh benefits for at least one partner, then

this can result in the breakdown of the mutualism, with one

partner becoming parasitic, or with the interaction being

abandoned [18].

Although network structure in ant–plant mutualisms has

been reasonably well documented, much less is known about

shifts in these interactions with elevation, and how this

might affect partner benefits (but see [19–21]). Partner avail-

ability may play an important role in such shifts. With

elevation, ants decrease in abundance and may be less impor-

tant as predators of herbivores [22]. In addition to decreased

ant-partner availability, there can be changes in the effective-

ness of persisting ant partners. For example, ants protecting

Neotropical EFN-bearing Inga species are less active and

less effective in the uplands, resulting in greater herbivore

damage [19]. By contrast, Piper immutatum, a Neotropical

domatia-bearing plant, experiences similar levels of herbivory

throughout its elevational range [21]. As previous work has

focused on single ant or plant species [19,20], it is not known

how whole networks change with elevation, and the associated

effects on plant benefits. If abundance and species richness

of plant–ants and ant–plants declines with temperature at

higher elevations, the structure of mutualistic networks will

also change. At a network level, decreased specialization

could occur as a result of reductions in population sizes of

some partner species, and complete loss of others, reducing

possibilities for partner choice. This would result in a greater

degree of connectance (a greater proportion of possible links

between species are realized) [23], and a corresponding lower

modularity (the degree to which the network is divided into

discrete groups of interacting species) [24]. These effects are

distinct from changes in network structure that occur only

as a result of changes in network size, and also from spatial

turnover of networks (independent of any environmental

factors), in which only a central core of generalist species persist

where ant-plants are surveyed at a single elevation [25].

Furthermore, associations with the ‘wrong’ partner species

might reduce the effectiveness of plant protection, resulting

in increased herbivory damage [15]. A similar effect is also

expected if there are reductions in patrolling rates within-ant

species as temperatures decrease.

We studied a community of terrestrial (non-epiphytic)

ant-plants and their ant inhabitants in primary forest from

700–1600 m.a.s.l. in Papua New Guinea (PNG) to investigate:

metres above sea level (m.a.s.l.) (i) how ant–plant interaction

networks change with elevation, (ii) how ant protective
behaviour on a focal species, Myristica subalulata, changes

with elevation, and (iii) whether there are correlated changes

in plant herbivory damage.
2. Methods
(a) Study site
We censused a community of terrestrial understorey ant-plants in

June–August 2013 in wet primary rainforest on the slopes of

Mount. Wilhelm near Numba village in Madang Province, PNG

(58 430 1800 S, 1458 160 1200 E; electronic supplementary material,

figure S1). The area experiences a mild dry season between late

June and early August. Temperature drops linearly with elevation

from a daily mean of 27.48C at 200 m.a.s.l. at approximately

0.588C 100 m21 (electronic supplementary material, figure S2).

(b) How do ant – plant interaction networks change
with elevation?

We established ten 0.15 ha transects (150 � 10 m), at elevational

intervals of 100 m, from 700 to 1600 m.a.s.l., the highest point of

the local topography. This spans the rapid decline in ant species rich-

ness observed on many tropical mountains [26,27], including Mount

Wilhelm [28]. We did not sample forests below 700 m.a.s.l., which

were subject to human disturbance. In each transect, we examined

all understorey trees (up to 15 m height) for entrance holes and ant

activity in stems, branches or other pre-formed domatia and

tagged all ant-inhabited trees (n¼ 386; figure 1).

Additionally, we censused all unoccupied individuals more

than or equal to 1 m in height (n ¼ 102) of the three most com-

monly inhabited species Ryparosa amplifolia (Achariaceae),

Myristica subalulata (Myristicaceae) and Chisocheton lasiocarpus
(Meliaceae). We identified each tree to species, recording height

and diameter at breast height (DBH). Plant vouchers are depos-

ited at New Guinea Binatang Research Center, Madang, PNG.

We conducted transects every 100 m in elevation, rather than at

fewer elevations with more replications, and since we tested ele-

vational trends, local irregularities owing to unreplicated

transects should manifest as outliers. The unimodal abundance

of most ant-plants across elevations (see Results) indicates that

we captured shifts in distributions with elevation reasonably

well. However, because our results relate to only a single moun-

tain, we are cautious in their interpretation.

Where possible without causing damage to the plant (and

hence compromising plant-benefit assays; see below), we collected

1–15 ants in absolute ethanol from each inhabited tree (355 of 386

individuals). Where ants were resident but not collected the

species was assigned as ‘uncertain’. Ants were identified to mor-

phospecies and species where possible, with species delineations

refined using existing reference collections and DNA barcoding

(electronic supplementary material, appendix S3).

All statistical analyses were performed in R [29]. We generated

bipartite networks for each elevation and calculated the metrics

Connectance (realized proportion of possible links), generality
(plant species per ant species), vulnerability (ant species per plant

species), modularity (see [30]) and network specialization (H2
0; devi-

ation from random partner choice [31]) with the function

‘networklevel’ in the R package bipartite [32]. Observed H2
0 was

compared with randomly expected values (Monte Carlo statistics;

electronic supplementary material, table S3). Connectance and

generality metrics, respectively, were square root and log trans-

formed to meet normality assumptions before testing their

relationship with elevation (linear or quadratic regressions

depending on fit as measured using Akaike information criterion

(AIC)). Vulnerability, H2
0 and modularity residuals were not

improved by transformation so their relationship with elevation
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Figure 1. Domatia of the three most abundant ant-plant species in our study. (a) Swollen stem domatia of Myristica subalulata being excavated by Anonychomyrma
ants, (b) entrance holes of a Chisocheton lasiocarpus domatium occupied by Podomyrma sp. 3, and (c) Podomyrma sp. 3 patrolling the swollen stem domatia of
Ryparosa amplifolia.
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was tested using the non-parametric Hoeffding’s D statistic [33].

Variation in abundance can account for changes in network

metrics [34]. To account for the effects of decreasing ant-

plant abundance with elevation, we calculated 95% prediction

intervals for all metrics based on repeated rarefaction of a pooled

low-elevation community (700 and 800 m combined) to match

abundances at higher elevations (1000 replications per elevation).
(c) How do ant patrolling, herbivore detection,
recruitment and attack change with elevation?

To understand how ant protective behaviour changes with

elevation, we focused on the interaction between the most

common myrmecophyte, M. subalulata, and the most common

genus of resident ants, Anonychomyrma, both spanning the entire

elevational range. Myristica subalulata is a widespread understorey

tree in New Guinea [35]. Although lacking EFNs and food bodies,

when occupied by ants M. subalulata frequently has honeydew

producing coccids inside its pre-formed domatia [35,36].

Ant behaviour was assessed from 700 to 1400 m.a.s.l. (n ¼ 80),

because ant occupancy was rare above 1400 m (figure 2; electronic

supplementary material, figure S3). We surveyed 10 trees per

elevation between 10.30 and 15.00, when ants were most active.

Trees 0.4–9.0 m in height were selected at random within trans-

ects, supplemented from the surrounding area when necessary.

To assess active leaf patrolling by resident ants, we randomly

selected two mature and two young leaves per tree to control

for leaf age (not all trees had both; n ¼ 74 and 28 trees respectively),

and instantaneously recorded the number of ants. Young leaves

were defined as smaller, paler and fleshier than mature leaves,

and were selected only when fully expanded. The relation-

ship of elevation and ant species with active leaf patrolling

was tested with repeated measures ANOVA, using leaf age as a

within-subject variable.

Following previous work [37], we assessed ant responses to

simulated herbivory. A single live worker termite, Microcero-
termes sp. (not a natural herbivore of M. subalulata, but uniform

in size, smell and lack of defences), hereafter referred to as the

surrogate ‘herbivore’, and a paper control (0.5 � 0.5 cm) were

pinned on 10 plants per elevation. The position was standardized

to the second pair of leaves from the base of a randomly selected

branch more than 1.5 m from ground level, 5 cm from the petiole
along the midrib of different leaves. As only a minority of plants

had young leaves (see above), at this position most leaves were

mature and thus reasonably uniform in size. The control and

treatment were alternated between left and right for every trial.

We observed for 10 min to record:

(i) time until first discovery (ant touching paper/herbivore with

antennae or mandibles);

(ii) time until arrival of first recruit (the second ant to locate the

paper/herbivore);

(iii) time spent by any ants actively attacking the paper/herbi-

vore; and

(iv) maximum number of ants on the leaf simultaneously.

Each metric was modelled as a function of elevation, tree height

and ant species using repeated measures ANOVA to account for

control and herbivore treatments on each tree. As the explanatory

variables ant species and elevation are co-dependent, we present

models for each predictor individually, and with all predictors

present (electronic supplementary material, tables S4–14).

Additionally, we individually modelled the two ant species

that were most widespread across elevations to test separately

for within-ant species effects (see the electronic supplementary

material, S16–17).

(d) Are there changes in herbivory damage with
elevation that might be driven by changes in
ant protection?

Herbivory was estimated visually for all trees less than or equal to

5 m in height by assigning each leaf to a damage category (0%, less

than 5%, 5–33%, more than 33% missing leaf area). On trees with

less than or equal to 50 leaves, estimates were based on all leaves,

and on trees with more than 50 leaves, approximately every third

leaf. For plotting herbivory and for testing repeatability (but not for

the main analysis, see below), we estimated mean percentage herbiv-

ory per tree by using an abundance-weighted average of the

midpoint of each herbivory category. N.S.P. performed estimates

for the census data, and C.R. for the behavioural assay data, with

45 trees in common. Estimates were highly correlated between obser-

vers (Pearson’s product–moment correlation; t43¼ 5.11, p , 0.001).

Though this method only provides a ‘snapshot’ measure of
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Figure 2. Distribution of ant-inhabited plant species (n ¼ 386 trees) and their ant occupants from 700 to 1600 m.a.s.l. No ant-inhabited trees were found at
1600 m. Bars on the left indicate the number of ant-occupied individuals per tree species. Bars on the right indicate the number of occupied trees per ant species.
Individual plants were only ever occupied by one species of ant, but most plant species were inhabited by multiple species of ant across multiple plant individuals.
Where ants were observed in domatia, but could not be collected, they were recorded as ‘uncertain’.
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herbivory, and could not capture leaves that were completely miss-

ing, it reflects the damage accrued to leaves over their lifetime, and

is appropriate for comparison over a landscape scale.

For the most common species (more than 10 occurrences: seven

plant species, five ant species), herbivory was modelled as a func-

tion of elevation, tree height, ant species and tree species using

ordinal logistical regression (clmm function, package ‘ordinal’),

with leaf as a random factor and data as counts in ordered cat-

egories. Again, because ant species, tree species and elevation

are co-dependent, we present models for each predictor individu-

ally, and with all predictors present (electronic supplementary

material, tables S18–S26). Models were selected using AIC.
3. Results
(a) How do ant – plant interaction networks change

with elevation?
We found 23 species of ant-inhabited plants belonging to six

families, and 10 species of ant inhabitants in five genera

(figures 2 and 3; electronic supplementary material, tables S1

and S2). Ant inhabitation ranged from 700 to 1500 m.a.s.l.,

with no evidence of inhabited plants at 1600 m. Each individ-

ual plant was occupied by only one species of ant,

presumably representing a single colony (no within-plant

aggression was observed). Occupancy of the three most abun-

dant plant species was high; 72%, 60% and 68% for M.
subalulata, C. lasiocarpus and R. amplifolia respectively, though

this varied with elevation, with some evidence for reduced

partner availability at higher elevations (electronic supplemen-

tary material, figure S3a–c). Five species of Anonychomyrma
(Dolichoderinae) and one species of Podomyrma (Myrmicinae)

were the most common plant inhabitants. Ants from the

genera Colobopsis, Pheidole and Tetramorium were also found

inhabiting plants, but only rarely (less than three occurrences

per ant species; electronic supplementary material, table S2).
With increasing elevation, the species richness of both

plants and their ant inhabitants decreased (linear regressions;

plants: p , 0.001, r2 ¼ 0.80, F¼ 36.3; ants: p , 0.001, r2 ¼

0.85, F ¼ 52.5; figure 4a,b). Although generality (quadratic

regression; p¼ 0.001, r2 ¼ 0.85, d.f. ¼ 6; figure 4c) and vulner-

ability (Hoeffding’s D; p ¼ 0.006, D¼ 0.23, n ¼ 9; figure 4d)

decreased with elevation, there was an increase in connectance

with elevation (quadratic regression; p ¼ 0.003, r2 ¼ 0.81, d.f.¼

6; figure 4e). Network specialization (H2
0) (Hoeffding’s D; p ¼

0.031, D ¼ 0.15, n ¼ 8; figure 4f) and modularity (Hoeffding’s

D; p¼ 0.002, D ¼ 0.34, n¼ 8; figure 4g) both declined with

elevation. The decrease in modularity at higher elevations cor-

responds to an increase in the dominance of Anonychomyrma
sp. 13, which interacted with all plant species present at

those elevations. At 700 m, 1000 m and 1100 m, network

specialization (H2
0) was greater than would be expected at

random ( p , 0.02). All network metrics changed more than

would be expected from rarefaction of lowland ant-plant com-

munities (grey bars in figure 4a–g) although results were less

consistent at 1500 m owing to small sample size. When

1500 m data were excluded, the effect of elevation on generality

and connectance remained significant ( p ¼ 0.001 and 0.008

respectively), but not on vulnerability ( p ¼ 0.136). Networks

lacked discrete compartments, i.e. there were no groups of

species that were entirely disconnected with the rest of the net-

work (figure 3), and the overall network specialization was low

compared with other myrmecophytic (i.e. domatia-bearing)

networks (H2
0 � 0.5) [23].
(b) How do ant patrolling, herbivore detection,
recruitment and attack change with elevation?

More ants patrolled young M. subalulata leaves than mature

leaves (repeated measures ANOVA; F24 ¼ 15.1, p , 0.001; elec-

tronic supplementary material, figure S4). There was no effect
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of elevation on patrolling of mature leaves (ANOVA; F74 ¼

0.18, p ¼ 0.673) or young leaves (ANOVA; F28 ¼ 1.03, p ¼
0.32) but patrolling numbers differed between ant species

( p , 0.001, F74 ¼ 5.70).

On M. subalulata 76% of controls and 79% of herbivores

were detected by ant inhabitants (all were species in the

genus Anonychomyrma; n ¼ 140; electronic supplemen-

tary material, figure S5). For the three most abundant ant

species (sp. 9, sp. 12 and sp. 13, inhabiting n ¼ 20, 34, and 21

trees, respectively), there was no effect of elevation (repeated

measures ANOVA; p ¼ 0.078, F54 ¼ 1.96) or of treatment ( p ¼
0.758, F54 ¼ 0.10) on detection time (figure 5a). However, detec-

tion time differed between ant species ( p¼ 0.028, F58 ¼ 3.81;

electronic supplementary material, figure S6a).

Of those detected, all herbivores and 89% of controls were

attacked. Time spent attacking declined with elevation
(figure 5b, p , 0.001, F66 ¼ 4.75), although attack times were

variable at middle elevations. Ants spent more time attacking

the herbivore than the control ( p , 0.001, F74 ¼ 18.38;

figure 5b). Time spent attacking varied between ant species

( p , 0.001, F71 ¼ 11.09), with Anonychomyrma sp. 9 spending

longest attacking both herbivores and controls (electronic

supplementary material, figure S6b).

Of those that were attacked, further workers were

recruited to 84% of herbivores and 77% to controls. Recruit-

ment time differed among elevations ( p ¼ 0.021, F42 ¼ 2.71)

but did not differ between species or treatments (figure 5c;

electronic supplementary material, figure S4c). The maximum

abundance of ants simultaneously present on the leaf

declined with elevation ( p , 0.001, F66 ¼ 3.09), with more

ants on leaves in the herbivore treatment than the controls

( p , 0.001, F74 ¼ 69.0) (figure 5d ). Maximum abundance
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also differed between ant species ( p , 0.001, F71 ¼ 9.60)

with Anonychomyrma sp. 9 being the most abundant, (elec-

tronic supplementary material, figure S6d ). When testing

Anonychomyrma sp. 9 and 12, which were present at

five or more elevations, we found no evidence for any

within-species changes in any of the measured protective

behaviours with elevation (electronic supplementary

material, tables S16–S17).

(c) Are there changes in herbivory damage with
elevation that might be driven by changes
in ant protection?

For the entire plant community, herbivory increased with

elevation (ordinal logistic regression; p , 0.001, z ¼ 54.6, n ¼
7584 leaves; 507 trees; figure 6), and differed between ant

species ( p , 0.001; electronic supplementary material, table

S18) and tree species ( p , 0.001; electronic supplementary

material, table S19), although the significant effect of elevation

was reduced when included in the same model as tree species

( p ¼ 0.002, z ¼ 3.05), and disappeared when included in the

same model with ant species ( p ¼ 0.177, z ¼ 1.35). This does
not mean that elevation is unimportant; more likely is that

elevation drives species composition and ant abundance,

which in turn affects herbivory. For M. subalulata, herbivory

increased with elevation ( p , 0.001, z ¼ 3.61; figure 6b,c), and

this effect disappeared when ant species was included in

the model ( p ¼ 0.076, z ¼ 1.78), probably owing to ant species

occurrence being co-dependent with elevation. There was no

effect of plant occupation by ants on herbivory damage ( p ¼
0.103, z ¼ 1.63), but when elevation was excluded from the

model unoccupied plants showed more herbivory ( p ¼ 0.027,

z ¼ 2.21; electronic supplementary material, figure S7).
4. Discussion
Few studies have investigated quantitative interaction net-

works along elevational gradients [38,39], and none, to our

knowledge, have studied ant–plant networks in this context.

We found that network structure changed with elevation and

benefits for plants of ant inhabitation may have been reduced

owing to decreased ant recruitment and increased herbivory.

Ants of 10 different species inhabited 23 species of terrestrial

ant-plants from six families, many of which have not
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previously been recorded as myrmecophytes (electronic sup-

plementary material, table S1). The high local diversity of

ant-hosting plants was not constrained to a particular clade,

in common with global patterns [14], and the high ant-plant

density indicates significant advantages of ant protection

(533 ha21 at 700 m, compared with up to 380 ha21 in central

Amazonia [40]). Most plant species hosted multiple species

and genera of ants (see also [9]), with numbers of both ant

and plant species declining with elevation. As a result, at

higher elevations both ants and plants interacted with fewer

partners, and networks became more connected, and less

specialized. In addition, patterns of plant inhabitation for the

most common species suggest reduced partner availability at

higher elevations (electronic supplementary material, figure

S3a–c). The most abundant ant-plant, M. subalulata, benefitted

less at higher elevations, with slower ant recruitment, and

higher levels of herbivory. This is, to our knowledge, the first

time that context-dependent benefits for domatia-bearing

plants have been documented in a whole-community context

along an environmental gradient.

Incidence and species richness of both plants and their ant

inhabitants declined with elevation, probably owing to lower

temperatures and increased precipitation which can limit

plant–ant interactions [41]. The upper limit we observed

(1600 m) is similar to that for myrmecophytes worldwide
[21,42], indicating some fundamental limitation for myrme-

cophily in plants. Ant communities in general are very

strongly limited by elevation, with decreases in ant activity

[27,43,44], and in plant-ant colony size [21], presumably

owing to thermal limitations [45]. However, the reduction in

species richness that we observed was greater than would be

expected from reductions in abundance alone (figure 3a,b),

indicating that communities at upper elevations were not just

rarefied versions of communities from lower elevations.

The change in ant and plant communities with elevation

was accompanied by changes in ant–plant network structure,

with the average ant or plant species interacting with fewer

partners. However, this apparent increase in partner selective-

ness is owing to reduced species richness at higher elevations,

as connectance increased, and both network modularity and

network specialization (H2
0) decreased (although the latter

result should be treated with caution because specialization

only differed from the null expectation at three elevations).

This indicates that with fewer partner species to choose from

at higher elevations, ants and plants may be less selective in

their associations (although note that active partner choice in

this system has not been demonstrated). This contrasts with

patterns found for seed dispersal and pollinator networks

across latitudinal gradients, in which reduced partner

availability results in greater specialization [6]. However,
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decreased specialization with elevation has been observed for

leaf miner–parasitoid interaction networks [38]. In contrast

with our results, these antagonistic networks showed no

change in connectance. The more connected networks that

we observed at higher elevations (see [46] for similar results

from plant–pollinator networks in the Andes) are probably

less sensitive to the loss of species than the less connected net-

works at lower elevations, because lost species are more likely

to be replaced [47], unless core species are lost (e.g. Anonycho-
myrma sp. 13). We found turnover of interactions with

elevation, with particular interactions becoming dominant,

rather than networks at higher elevations comprising a

subset of those from lower elevations (as is the case for cavity

nesting hymenoptera and their parasitoids and kleptoparasites

[39]). This contrasts with the expected spatial turnover of ant–

plant networks, in which the central core of generalist species

remains the same [25], supporting the idea that the observed

changes are elevation-driven. It is likely that climate plays a

key role in these changes, as observed for other mutualistic net-

works, which are affected by temperature and precipitation

[48]. For plants, fewer ant-partner options could result in a sub-

optimal biotic defence, because with a smaller selection of

hosts, it is less likely that a suitable partner will be present.

This might in turn reduce plant fitness at certain elevations

and ultimately define elevational ranges.

We found some evidence for this reduction in plant protec-

tion by ant partners with increasing elevation, accompanied by

increased herbivory damage. Although patterns of ant patrol-

ling did not consistently change with elevation, recruitment

metrics (first worker recruited, time spent attacking, maximum

number of workers observed) indicated a decreased invest-

ment in protective behaviour. Similar patterns have been

observed for ant predation more broadly at high elevations,

with ants becoming less important natural enemies of
caterpillars than birds, parasitoid wasps and parasitoid flies

[19,22]. Overall, the outcome of ant–plant symbioses is expected

to be context-dependent, with our findings indicating that ants

provide greater benefits at higher temperatures (within the

range that we studied). At lower elevations ants spent similar

lengths of time attacking the paper control as they did attacking

the surrogate herbivore, but at higher elevations they spent less

time on controls and more on surrogate herbivores. This may

indicate that only plants at lower elevations receive the benefits

of ants removing detritus, vines or other encroaching vegetation

(e.g. [49]). The response to the surrogate herbivore also differed

between ant species. Anonychomyrma sp. 9 was the fastest to

detect paper/herbivores, spent longer attacking, and was

more abundant on leaves with surrogate herbivores. However,

owing to limited overlap in ant elevational ranges, we could not

distinguish effects of elevation from effects of species turnover

on ant protection of host plants. Yet it is clear that overall,

plants were equally well-patrolled, but less well defended at

higher elevations. This could partially explain the increase in

herbivory damage with elevation, both for the ant-plant

community as a whole, and for the species M. subalulata.

Such changes in the overall benefits for plants might relate to

network structure in two different ways: (i) the smaller number

of available ant partners at higher elevations (figure 3a) are less

likely to include a more beneficial partner (c.f. the ‘sampling

effect’ in biodiversity–ecosystem function relationships [50]),

or (ii) higher elevation ants in general are less likely to be

good partners. Regardless of the driver, these reduced benefits

might then cause the breakdown of the mutualism [18], owing

to the parallel changes in costs with elevation. Given our find-

ings, it is likely that future anthropogenic-driven changes in

the environmental context for these mutualistic networks will

alter both interaction network structure, and the balance of

costs and benefits for mutualistic partners.
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