43 research outputs found

    Heterotic orbifold models on Lie lattice with discrete torsion

    Full text link
    We provide a new class of Z_N x Z_M heterotic orbifolds on non-factorisable tori, whose boundary conditions are defined by Lie lattices. Generally, point groups of these orbifolds are generated by Weyl reflections and outer automorphisms of the lattices. We classify abelian orbifolds with and without discrete torsion. Then we find that some of these models have smaller Euler numbers than those of models on factorisable tori T^2 x T^2 x T^2. There is a possibility that these orbifolds provide smaller generation numbers of N=1 chiral matter fields than factorisable models.Comment: 24 pages, 5 figures; v2: a few errors on tables are corrected, typos corrected, version to appear in JHE

    Free Fermion Orientifolds

    Get PDF
    We investigate a class of orientifold models based on tensor products of 18 Ising models. Using the same search criteria as for the comparable case of Gepner model orientifolds we find that there are no three-family standard model configurations with tadpole cancellation. Even if we do not impose the latter requirement, we only find one such configuration in the special case of complex free fermions. In order to allow a comparison with other approaches we enumerate the Hodge numbers of the type-IIB theories we obtain. We provide indications that there are fermionic IIB vacua that are not Z2×Z2Z_2\times Z_2 orbifolds.Comment: 18 pages + Appendix; references adde

    Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome

    Get PDF
    Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities

    Spinor-Vector Duality in Heterotic String Orbifolds

    Get PDF
    The three generation heterotic-string models in the free fermionic formulation are among the most realistic string vacua constructed to date, which motivated their detailed investigation. The classification of free fermion heterotic string vacua has revealed a duality under the exchange of spinor and vector representations of the SO(10) GUT symmetry over the space of models. We demonstrate the existence of the spinor-vector duality using orbifold techniques, and elaborate on the relation of these vacua to free fermionic models.Comment: 20 pages. v2 minor corrections. Version to appear on JHEP. v3 misprints correcte

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio

    A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grebe-type chondrodysplasia (GCD) is a rare autosomal recessive syndrome characterized by severe acromesomelic limb shortness with non-functional knob like fingers resembling toes. Mutations in the cartilage-derived morphogenetic protein 1 (<it>CDMP1</it>) gene cause Grebe-type chondrodysplasia.</p> <p>Methods</p> <p>Genotyping of six members of a Pakistani family with Grebe-type chondrodysplasia, including two affected and four unaffected individuals, was carried out by using polymorphic microsatellite markers, which are closely linked to <it>CDMP1 </it>locus on chromosome 20q11.22. To screen for a mutation in <it>CDMP1 </it>gene, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the family and sequenced directly in an ABI Prism 310 automated DNA sequencer.</p> <p>Results</p> <p>Genotyping results showed linkage of the family to <it>CDMP1 </it>locus. Sequence analysis of the <it>CDMP1 </it>gene identified a novel four bases insertion mutation (1114insGAGT) in exon 2 of the gene causing frameshift and premature termination of the polypeptide.</p> <p>Conclusion</p> <p>We describe a 4 bp novel insertion mutation in <it>CDMP1 </it>gene in a Pakistani family with Grebe-type chondrodysplasia. Our findings extend the body of evidence that supports the importance of <it>CDMP1 </it>in the development of limbs.</p

    A perfect match of MSSM-like orbifold and resolution models via anomalies

    Full text link
    Compactification of the heterotic string on toroidal orbifolds is a promising set-up for the construction of realistic unified models of particle physics. The target space dynamics of such models, however, drives them slightly away from the orbifold point in moduli space. This resolves curvature singularities, but makes the string computations very difficult. On these smooth manifolds we have to rely on an effective supergravity approximation in the large volume limit. By comparing an orbifold example with its blow-up version, we try to transfer the computational power of the orbifold to the smooth manifold. Using local properties, we establish a perfect map of the the chiral spectra as well as the (local) anomalies of these models. A key element in this discussion is the Green-Schwarz anomaly polynomial. It allows us to identify those redefinitions of chiral fields and localized axions in the blow-up process which are relevant for the interactions (such as Yukawa-couplings) in the model on the smooth space.Comment: 2+35 pages, 1 figur

    Forming conjectures within a spreadsheet environment

    Get PDF
    This paper is concerned with the use of spreadsheets within mathematical investigational tasks. Considering the learning of both children and pre-service teaching students, it examines how mathematical phenomena can be seen as a function of the pedagogical media through which they are encountered. In particular, it shows how pedagogical apparatus influence patterns of social interaction, and how this interaction shapes the mathematical ideas that are engaged with. Notions of conjecture, along with the particular faculty of the spreadsheet setting, are considered with regard to the facilitation of mathematical thinking. Employing an interpretive perspective, a key focus is on how alternative pedagogical media and associated discursive networks influence the way that students form and test informal conjectures
    corecore