10 research outputs found

    Wild boar density data generated by camera trapping in nineteen European areas

    Get PDF
    This report presents the results of field activities in relation to the generation of reliable wild boar density values by camera trapping (CT) in 19 areas in Europe, mainly in East Europe. Random Encounter Model (REM) densities ranged from 0.35±0.24 to 15.25±2.41 (SE) individuals/km2. No statistical differences in density among bioregions were found. The number of contacts was the component of the trapping rate that determined the coefficient of variation (CV) the most. The daily range (DR) significantly varied as a function of management; the higher values were detected in hunting grounds compared to protected areas, indicating that movement parameters are population specific, and confirming the potential role of hunting activities in increasing wild boar movement and contact rates among individual or groups. The results presented in this report illustrate that a harmonized approach to actual wildlife density estimation (namely for terrestrial mammals) is possible at a European scale, sharing the same protocols, collaboratively designing the study, processing, and analysing the data. This report adds reliable wild boar density values that have the potential to be used for wild boar abundance spatial modelling, both directly or to calibrate outputs of model based on abundance (such as hunting bags) or occurrence data. Future REM developments should focus on improving the precision of estimates (probably through increased survey effort). Next steps require an exhaustive and representative design of a monitoring network to estimate reliable trends of wild boar populations as a function of different factors in Europe. In this regard, the newly created European Observatory of Wildlife will be a network of observation points provided by collaborators from all European countries capable to monitor wildlife population at European level.EFSA-Q-2020-00677Peer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe
    corecore