462 research outputs found

    Opposing shear senses in a subdetachment mylonite zone: Implications for core complex mechanics

    Get PDF
    [1] Global studies of metamorphic core complexes and low‐angle detachment faults have highlighted a fundamental problem: Since detachments excise crustal section, the relationship between the mylonitic rocks in their footwalls and the brittle deformation in their hanging walls is commonly unclear. Mylonites could either reflect ductile deformation related to exhumation along the detachment fault, or they could be a more general feature of the extending middle crust that has been “captured ” by the detachment. In the first case we would expect the kinematics of the mylonite zone to mirror the sense of movement on the detachment; in the second case both the direction and sense of shear in the mylonites could be different. The northern Snake Range dĂ©collement (NSRD) is a classic Basin and Range detachment fault with a well‐documented top‐east of displacement. We present structural, paleo-magnetic, geochronological, and geothermometric evidence to suggest that the mylonite zone below the NSRD locally experienced phases of both east ‐ and west‐directed shear, inconsistent with movement along a single detachment fault. We therefore propose that the footwall mylonites represent a predetachment dis-continuity in the middle crust that separated localized deformation above from distributed crustal flow below (localized‐distributed transition (LDT)). The mylonites were subsequently captured by a moderately dipping brittle detachment that soled down to the middle crust and exhumed them around a rolling hinge into a subhorizontal orientation at the surface, produc-ing the present‐day NSRD. In this interpretation the brittle hanging wall represents a series of rotated upper crustal normal faults, whereas the mylonitic footwall represents one or more exhumed middl

    Retrofit Of Gas Lubricated Face Seals In A Centrifugal Compressor.

    Get PDF
    LecturePg. 75-84There are significant advantages in using gas lubricated face seals (dry gas seals) in centrifugal compressor service. Foremost among these are the elimination of the seal oil system resulting in lower maintenance, increased safety, and higher operating availability. For these reasons, one of four identical compressors at an installation having severe problems with seal oil contamination was selected for trial conversion to dry gas seals. The rotordynamic engineering portion of this job was done by the compressor manufacturer in conjunction with the gas seal supplier. The seal assembly was designed so that it would be essentially a drop-in conversion from a mechanical standpoint. Rotordynamic studies indicated that the conversion would result in a "better" machine. Unfortunately, sustained operations were not possible, due to excessive vibration levels at startup with the new seals. The shaft vibration exceeded 0.007 in, peak-to-peak, at a subsynchronous frequency of 4900 rpm (the machine rated speed is in excess of 10,000 rpm). These levels were sufficiently high to cause extensive damage to all internal labyrinths. The midspan labyrinths were wiped open in excess of 0.060 in, radial. Analysis of tape recorded data indicated that the vibration was due to a rotor/bearing system dynamic instability. Additional computer simulations of the compressor rotordynamics revealed that the oil seals had provided sufficient damping to the system to bound the instability. This extra damping was not being provided by the gas seals. Bearing redesign to increase stability and realignment of the rotor within the bundle to remove suspected excitation appear to have eliminated the problem

    Rheological transitions in the middle crust:insights from Cordilleran metamorphic core complexes

    Get PDF
    High-strain mylonitic rocks in Cordilleran metamorphic core complexes reflect ductile deformation in the middle crust, but in many examples it is unclear how these mylonites relate to the brittle detachments that overlie them. Field observations, microstructural analyses, and thermobarometric data from the footwalls of three metamorphic core complexes in the Basin and Range Province, USA (the Whipple Mountains, California; the northern Snake Range, Nevada; and Ruby Mountains–East Humboldt Range, Nevada), suggest the presence of two distinct rheological transitions in the middle crust: (1) the brittle–ductile transition (BDT), which depends on thermal gradient and tectonic regime, and marks the switch from discrete brittle faulting and cataclasis to continuous, but still localized, ductile shear, and (2) the localized–distributed transition, or LDT, a deeper, dominantly temperature-dependent transition, which marks the switch from localized ductile shear to distributed ductile flow. In this model, brittle normal faults in the upper crust persist as ductile shear zones below the BDT in the middle crust, and sole into the subhorizontal LDT at greater depths.<br><br>In metamorphic core complexes, the presence of these two distinct rheological transitions results in the development of two zones of ductile deformation: a relatively narrow zone of high-stress mylonite that is spatially and genetically related to the brittle detachment, underlain by a broader zone of high-strain, relatively low-stress rock that formed in the middle crust below the LDT, and in some cases before the detachment was initiated. The two zones show distinct microstructural assemblages, reflecting different conditions of temperature and stress during deformation, and contain superposed sequences of microstructures reflecting progressive exhumation, cooling, and strain localization. The LDT is not always exhumed, or it may be obscured by later deformation, but in the Whipple Mountains, it can be directly observed where high-strain mylonites captured from the middle crust depart from the brittle detachment along a mylonitic front

    HRTF Magnitude Synthesis via Sparse Representation of Anthropometric Features

    Get PDF
    International audienceWe propose a method for the synthesis of the magnitudes of Head-related Transfer Functions (HRTFs) using a sparse representation of anthropometric features.Our approach treats the HRTF synthesis problem as finding a sparse representation of the subject's anthropometric features w.r.t. the anthropometric features in the training set.The fundamental assumption is that the magnitudes of a given HRTF set can be described by the same sparse combination as the anthropometric data.Thus, we learn a sparse vector that represents the subject's anthropometric features as a linear superposition of the anthropometric features of a small subset of subjects from the training data.Then, we apply the same sparse vector directly on the HRTF tensor data.For evaluation purpose we use a new dataset, containing both anthropometric features and HRTFs.We compare the proposed sparse representation based approach with ridge regression and with the data of a manikin (which was designed based on average anthropometric data), and we simulate the best and the worst possible classifiers to select one of the HRTFs from the dataset.For instrumental evaluation we use log-spectral distortion.Experiments show that our sparse representation outperforms all other evaluated techniques, and that the synthesized HRTFs are almost as good as the best possible HRTF classifier

    Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making

    Get PDF
    Considerable evidence has emerged to implicate ventromedial prefrontal cortex in encoding expectations of future reward during value-based decision making. However, the nature of the learned associations upon which such representations depend is much less clear. Here, we aimed to determine whether expected reward representations in this region could be driven by action–outcome associations, rather than being dependent on the associative value assigned to particular discriminative stimuli. Subjects were scanned with functional magnetic resonance imaging while performing 2 variants of a simple reward-related decision task. In one version, subjects made choices between 2 different physical motor responses in the absence of discriminative stimuli, whereas in the other version, subjects chose between 2 different stimuli that were randomly assigned to different responses on a trial-by-trial basis. Using an extension of a reinforcement learning algorithm, we found activity in ventromedial prefrontal cortex tracked expected future reward during the action-based task as well as during the stimulus-based task, indicating that value representations in this region can be driven by action–outcome associations. These findings suggest that ventromedial prefrontal cortex may play a role in encoding the value of chosen actions irrespective of whether those actions denote physical motor responses or more abstract decision options

    Glyoxal observations in the global marine boundary layer

    Get PDF
    Glyoxal is an important intermediate species formed by the oxidation of common biogenic and anthropogenic volatile organic compounds such as isoprene, toluene and acetylene. Although glyoxal has been shown to play an important role in urban and forested environments, its role in the open ocean environment is still not well understood, with only a few observations showing evidence for its presence in the open ocean marine boundary layer (MBL). In this study, we report observations of glyoxal from ten field campaigns in different parts of the world's oceans. These observations together represent the largest database of glyoxal in the MBL. The measurements are made with similar instruments that have been used in the past, although the open ocean values reported here, average of about 25 pptv with an upper limit of 40 pptv, are much lower than previously reported observations that were consistently higher than 40 pptv and had an upper limit of 140 pptv, highlighting the uncertainties in the Differential Optical Absorption Spectroscopy (DOAS) method for the retrieval of glyoxal. Despite retrieval uncertainties, the results reported in this work support previous suggestions that the currently known sources of glyoxal are insufficient to explain the average MBL concentrations. This suggests that there is an additional missing source, more than a magnitude larger than currently known sources, which is necessary to account for the observed atmospheric levels of glyoxal. Therefore it could play a more important role in the MBL than previously considered

    QUERIES 'N THEORIES: An instructional game on the DOT, DOT, DOT, ... approach to scientific method

    Get PDF
    QUERIES 'N THEORIES provides a parallel to the strong inference approach to scientific method — designing experiments, observing data, and theorizing. The reiterated use of the DOT approach (Design, Observe, Theorize) in the problem-solving required by the game mirrors the regular, systematic application of strong inference in some areas of science (e.g., high energy physics and molecular biology) that have moved ahead much more rapidly than others. Moreover, the game embodies and provides practive in two aspects of scientific theorizing and designing which John Platt has pointed out as central to scientific advance: (1) the usefulness of multiple hypotheses and (2) disproof as science's mode of advance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43862/1/11251_2004_Article_BF00150473.pd
    • 

    corecore