432 research outputs found

    Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocomposites

    Get PDF
    The effects of crystalline morphology and presence of nanoparticles such as cellulose nanofibers (CNFs), organically modified nanoclay (C30B), or a combination of both on water vapor sorption and diffusion in polylactide (PLA) were evaluated by a quartz spring microbalance (QSM). It was found that the large spherulite size induced by high-temperature processing leads to an increase in water sorption and a substantial reduction of diffusion with increasing crystallinity. Contrarily, small-sized spherulites, arising after low-temperature processing during solvent-casting, showed a different behavior with a slight decrease in both water vapor sorption and diffusion with increasing crystallinity. These observations suggest that solvent-casting at low temperatures should not be used to predict the properties a material will show after industrial-scale processing. From the analysis of the nanocomposite materials, it was concluded that nanoparticles affected the materialâ€Čs properties not only by themselves but also by modifying the crystalline morphology. Interestingly, this led to CNF showing similar performance to C30B, decreasing water diffusivity (21 vs 27%) on isothermally crystallized materials despite its less favorable geometry. Additionally, the incorporation of 1 wt % CNF and C30B decreased water vapor transmission rate (WVTR) by 24% under an amorphous state but by 44% in a crystallized state, which makes hybrid CNF/C30B composites a promising food packaging material

    Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam

    Get PDF
    While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.Comment: 16 pages, 13 figure

    Precision scans of the pixel cell response of double sided 3D pixel detectors to pion and x-ray beams

    Get PDF
    hree-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55Όm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6Όm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− ÎŒ + ΜΌ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Observation of excited Lambda_b0 baryons

    Get PDF
    Using pp collision data corresponding to 1.0 fb-1 integrated luminosity collected by the LHCb detector, two narrow states are observed in the Lambda_b0pi+pi- spectrum with masses 5911.97 +- 0.12(stat) +- 0.02(syst) +- 0.66(Lambda_b0 mass) MeV/c^2 and 5919.77 +- 0.08(stat) +- 0.02(syst) +- 0.66(Lambda_b0 mass) MeV/c^2. The significances of the observations are 5.2 and 10.2 standard deviations, respectively. These states are interpreted as the orbitally-excited Lambda_b0 baryons, Lambda_b*0(5912) and Lambda_b*0(5920).Comment: Replaced by version published in Phys. Rev. Lett, modified fit with better mass resolution treatmen

    Measurement of the CP-violating phase phi_s in the decay Bs->J/psi phi

    Get PDF
    We present a measurement of the time-dependent CP-violating asymmetry in B_s -> J/psi phi decays, using data collected with the LHCb detector at the LHC. The decay time distribution of B_s -> J/psi phi is characterized by the decay widths Gamma_H and Gamma_L of the heavy and light mass eigenstates of the B_s-B_s-bar system and by a CP-violating phase phi_s. In a sample of about 8500 B_s -> J/psi phi events isolated from 0.37 fb^-1 of pp collisions at sqrt(s)=7 TeV we measure phi_s = 0.15 +/- 0.18 (stat) +/- 0.06 (syst) rad. We also find an average B_s decay width Gamma_s == (Gamma_L + Gamma_H)/2 = 0.657 +/- 0.009 (stat) +/- 0.008 (syst) ps^-1 and a decay width difference Delta Gamma_s == Gamma_L - Gamma_H} = 0.123 +/- 0.029 (stat) +/- 0.011 (syst) ps^-1. Our measurement is insensitive to the transformation (phi_s,DeltaGamma_s --> pi - phi_s, - Delta Gamma_s.Comment: 9 pages, 3 figure

    Search for CP violation in D+→K−K+π+D^{+} \to K^{-}K^{+}\pi^{+} decays

    Get PDF
    A model-independent search for direct CP violation in the Cabibbo suppressed decay D+→K−K+π+D^+ \to K^- K^+\pi^+ in a sample of approximately 370,000 decays is carried out. The data were collected by the LHCb experiment in 2010 and correspond to an integrated luminosity of 35 pb−1^{-1}. The normalized Dalitz plot distributions for D+D^+ and D−D^- are compared using four different binning schemes that are sensitive to different manifestations of CP violation. No evidence for CP asymmetry is found.Comment: 13 pages, 8 figures, submitted to Phys. Rev.

    Strong constraints on the rare decays Bs -> mu+ mu- and B0 -> mu+ mu-

    Get PDF
    A search for Bs -> mu+ mu- and B0 -> mu+ mu- decays is performed using 1.0 fb^-1 of pp collision data collected at \sqrt{s}=7 TeV with the LHCb experiment at the Large Hadron Collider. For both decays the number of observed events is consistent with expectation from background and Standard Model signal predictions. Upper limits on the branching fractions are determined to be BR(Bs -> mu+ mu-) mu+ mu-) < 1.0 (0.81) x 10^-9 at 95% (90%) confidence level.Comment: 2+6 pages; 4 figures; Accepted for publication in Physical Review Letter
    • 

    corecore