18 research outputs found

    Nov sistem za identifikaciju čestica u području 3 − 8 GeV/c

    Get PDF
    A threshold imaging Cherenkov (TIC) detector, in conjunction with a tracking device, has been developed to allow pion/kaon, proton identification in the 3–8 GeV/c range of momenta. The most important feature of the system is that it allows spatial identification of the photons of particles above the Cherenkov threshold and their correlation to a particular track. The TIC detector uses a MWPC detector with TMAE for photon conversion into electrons. The first results obtained in ultrarelativistic lead–lead collisions at the CERN SPS accelerator are presented. In a recent development use of a solid CsI cathode instead of TMAE has been successfully tested in proton–lead collisions at the CERN SPS.Razvijen je pozicioni detektor fotona Cerenkovljeva zračenja iznad praga emisije (TIC), koji omogućuje (u sklopu sistema za mjerenje tragova čestica) razlikovanje piona od kaona i protona u području između praga emisije za pione i za kaone t.j između 3 i 8 GeV/c. Najbitnija odlika sistema jest mogućnost dvodimenzijske lokalizacije emitiranih fotona i njihovo jednoznačno pridruživanje određenom tragu čestice koji je odreden drugim detektorima. Detektor TIC primjenjuje višezičane proporcionalne komore s TMAE dodanom brojačkom plinu za konverziju fotona u elektrone. Prikazuju se prvi rezultati dobiveni u ultrarelativističkim sudarima iona olova s metom olova u SPS akceleratoru u CERNu. Nedavno je upotreba čvrstih fotokatoda umjesto TMAE bila uspješno iskušana procesima sudara protona s olovom u SPS akceleratoru

    Nov sistem za identifikaciju čestica u području 3 − 8 GeV/c

    Get PDF
    A threshold imaging Cherenkov (TIC) detector, in conjunction with a tracking device, has been developed to allow pion/kaon, proton identification in the 3–8 GeV/c range of momenta. The most important feature of the system is that it allows spatial identification of the photons of particles above the Cherenkov threshold and their correlation to a particular track. The TIC detector uses a MWPC detector with TMAE for photon conversion into electrons. The first results obtained in ultrarelativistic lead–lead collisions at the CERN SPS accelerator are presented. In a recent development use of a solid CsI cathode instead of TMAE has been successfully tested in proton–lead collisions at the CERN SPS.Razvijen je pozicioni detektor fotona Cerenkovljeva zračenja iznad praga emisije (TIC), koji omogućuje (u sklopu sistema za mjerenje tragova čestica) razlikovanje piona od kaona i protona u području između praga emisije za pione i za kaone t.j između 3 i 8 GeV/c. Najbitnija odlika sistema jest mogućnost dvodimenzijske lokalizacije emitiranih fotona i njihovo jednoznačno pridruživanje određenom tragu čestice koji je odreden drugim detektorima. Detektor TIC primjenjuje višezičane proporcionalne komore s TMAE dodanom brojačkom plinu za konverziju fotona u elektrone. Prikazuju se prvi rezultati dobiveni u ultrarelativističkim sudarima iona olova s metom olova u SPS akceleratoru u CERNu. Nedavno je upotreba čvrstih fotokatoda umjesto TMAE bila uspješno iskušana procesima sudara protona s olovom u SPS akceleratoru

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    The potential of High-Throughput Sequencing (HTS) of natural samples as a source of primary taxonomic information for reference libraries of diatom barcodes

    Get PDF
    International audienceDiatoms are used routinely to assess pollution level in rivers and lakes. Current methods are based on identification by light microscopy, which is laborious. An alternative is to identify species based on short DNA fragments and High-Throughput Sequencing (HTS). However a potential limitation is the incomplete coverage of species in reference barcode libraries. Usually these libraries are compiled by isolating cells, before culturing and sequencing them, which is tedious and often unsuccessful. Here we propose the use of rbcL sequences from environmental samples analysed by HTS. We set several criteria to ensure good sequence quality and correspondence with the target species observed in microscopy: the sequence needed to be abundant in the sample, and with no insertions nor deletions or stop codon, phylogenetic neighbour taxa had to correspond to neighbour taxonomic taxa expected from morphological observations. Four species from tropical rivers are given as examples, including one that is new to science

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.7Calouste Gulbenkian Foundation from LisbonSwiss Fonds Kidagan, ArmeniaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e Projetos (FINEP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of China (NSFC)Chinese Ministry of Education (CMOE)Ministry of Science and Technology of China (MSTC)Ministry of Education and Youth of the Czech RepublicDanish Natural Science Research CouncilCarlsberg FoundationDanish National Research FoundationEuropean Research Council under European CommunityHelsinki Institute of PhysicsAcademy of FinlandFrench CNRS-IN2P3Region Pays de LoireRegion AlsaceRegion AuvergneCEA, FranceGerman BMBFHelmholtz AssociationGeneral Secretariat for Research and Technology, Ministry of Development, GreeceHungarian OTKANational Office for Research and Technology (NKTH)Department of Atomic EnergyDepartment of Science and Technology of the Government of IndiaIstituto Nazionale di Fisica Nucleare (INFN) of ItalyMEXT, JapanJoint Institute for Nuclear Research, DubnaNational Research Foundation of Korea (NRF)CONACYTDGAPA, MexicoALFA-ECHELEN Program (High-Energy physics Latin-American-European Network)Stichting voor Fundamenteel Onderzoek der Materie (FOM)Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), NetherlandsResearch Council of Norway (NFR)Polish Ministry of Science and Higher EducationNational Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS)Federal Agency of Science of the Ministry of Education and Science of Russian FederationInternational Science and Technology Center, Russian Academy of SciencesRussian Federal Agency of Atomic EnergyRussian Federal Agency for Science and InnovationsCERN-INTASMinistry of Education of SlovakiaDepartment of Science and Technology, South AfricaCIEMATEELAMinisterio de Educacion y Ciencia of SpainXunta de Galicia (Conselleria de Educacion)CEADENCubaenergia, CubaIAEA (International Atomic Energy Agency)Swedish Reseach Council (VR)Knut & Alice Wallenberg Foundation (KAW)Ukraine Ministry of Education and ScienceUnited Kingdom Science and Technology Facilities Council (STFC)The United States Department of EnergyUnited States National Science FoundationState of TexasState of OhioFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV

    No full text
    The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Get PDF
    We present measurements of Underlying Event observables in pp collisions at s√=0.9 and 7TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p T,LT in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p T thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2–3 between the lower and higher collision energies, depending on the track p T threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed p T in the Transverse region by about 10–30%

    Measurement of charm production at central rapidity in proton-proton collisions at s\sqrt{s} = 2.76 TeV

    No full text
    The pt-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0, D+, and D*+ in the rapidity range |y| K- pi+, D+ -> K- pi+ pi+, D*+ -> D0 pi+, and their charge conjugates, and was performed on a L_int = 1.1 nb^-1 event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at sqrt(s)= 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pt-differential production cross sections at sqrt(s) = 2.76 TeV and our previous measurements at sqrt(s) = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of c dbar D mesons produced in a vector state was also determined.The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined
    corecore