15 research outputs found

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.EPICOVIDEHA has received funds from Optics COMMITTM (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223)

    A Comprehensive Immunophenotypic Marker Analysis of Hairy Cell Leukemia in Paraffin-Embedded Bone Marrow Trephine Biopsies-A Tissue Microarray Study.

    No full text
    Hairy cell leukemia (HCL) is an uncommon B cell lymphoproliferation characterized by a unique immunophenotype. Due to low number of circulating neoplastic cells and 'dry tap' aspiration, the diagnosis is often based on BM trephine biopsy. We have performed a consecutive immunohistochemical analysis to evaluate diagnostic usefulness of various HCL markers (CD11c, CD25, CD68, CD103, CD123, CD200, annexin A1, cyclin D1, DBA.44, HBME-1, phospho-ERK1/2, TRAP, and T-bet) currently available against fixation resistant epitopes. We analyzed tissue microarrays consisting of samples gained from 73 small B-cell lymphoma cases, including hairy cell leukemia (HCL) (n = 32), HCL variant (HCL-v) (n = 4), B-cell chronic lymphocytic leukemia (B-CLL) (n = 11), lymphoplasmacytic lymphoma (LPL) (n = 3), mantle cell lymphoma (MCL) (n = 10), splenic diffuse red pulp small B cell lymphoma (SDRPL) (n = 2), splenic B cell marginal zone lymphoma (SMZL) (n = 8), and splenic B cell lymphoma/leukemia, unclassifiable (SBCL) (n = 3) cases. The HCL cases were 100 % positive for all but 2 (DBA.44 and CD123) of these markers. Annexin A1 showed 100 % specificity and accuracy, which was followed by CD123, pERK, CD103, HBME-1, CD11c, CD25, CD68, cyclin D1, CD200, T-bet, DBA.44, and TRAP, in decreasing order. In conclusion, our results reassured the high specificity of annexin A1 and pERK, as well as the diagnostic value of standard HCL markers of CD11c, CD25, CD103, and CD123 also in paraffin-embedded BM samples. Additional markers, including HBME-1, cyclin D1, CD200, and T-bet also represent valuable tools in the differential diagnosis of HCL and its mimics

    Monoclonal antibody HBME-1 reacts with a minor subset of B cells with villous surface and can be useful in the diagnosis of hairy cell leukemia and other indolent lymphoproliferations of villous B lymphocytes.

    No full text
    The Hector Battifora mesothelial epitope-1 (HBME-1) monoclonal antibody has been generated against human mesothelioma cells and recognizes a biochemically unknown membrane epitope. We have accidentally found that the HBME-1 reacts with scattered lymphocytes showing villous surface in hyperplastic lymphoid tissue. To evaluate its reactivity pattern, we have performed a consecutive immunohistochemical study in nonneoplastic bone marrow and lymphoid samples (n = 40), as well as in malignant lymphoproliferations (n = 427), including hairy cell leukemia (HCL) (n = 72), HCL variant (HCL-v) (n = 13), splenic diffuse red pulp small B cell lymphoma (SDRPL) (n = 8), splenic B cell marginal zone lymphoma (SMZL) (n = 59), and splenic B cell lymphoma/leukemia, not further classifiable on bone marrow morphology (SBCL) (n = 37) cases. The staining pattern of HBME-1 was compared to DBA.44. HBME-1+ villous lymphocytes were constantly detected in low number in nonneoplastic lymphoid tissues. With multicolor immunofluorescence staining, HBME-1+ lymphocytes showed a CD20+/CD79a+/IgM+ B cell phenotype. In B cell lymphoproliferations of villous lymphocytes, HBME-1 reactivity was demonstrated in 96 % of HCL, 39 % of HCL-v, 50 % of SDRPL, 12 % of SMZL, and 19 % of SBCL cases. Nodal and extranodal marginal zone lymphoma cases were positive in 12 % of the cases. A small minority (4 %) of the other B cell lymphomas and no T cell lymphoma revealed tumor cell reactivity with HBME-1. In conclusion, our study has established that HBME-1 reacts with a minor subset of B lymphocytes and a small proportion of B cell lymphomas, which has not been described previously. We suggest that HBME-1 can be a useful marker in the diagnosis of HCL and other indolent lymphoproliferations of villous B lymphocytes

    B-cell malignancies treated with targeted drugs and SARS-CoV-2 infection: A European Hematology Association Survey (EPICOVIDEHA)

    No full text
    Patients with lymphoproliferative diseases (LPD) are vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we describe and analyze the outcome of 366 adult patients with chronic lymphocytic leukemia (CLL) or non-Hodgkin Lymphoma (NHL) treated with targeted drugs and laboratory-confirmed COVID-19 diagnosed between February 2020 and January 2022. Median follow-up was 70.5 days (IQR 0-609). Most used targeted drugs were Bruton-kinase inhibitors (BKIs) (N= 201, 55%), anti-CD20 other than rituximab (N=61, 16%), BCL2 inhibitors (N=33, 9%) and lenalidomide (N=28, 8%).Only 16.2% of the patients were vaccinated with 2 or more doses of vaccine at the onset of COVID-19. Mortality was 24% (89/366) on day 30 and 36%(134/366) on the last day of follow-up. Age &gt;75 years (p&lt;0.001, HR 1.036), active malignancy (p&lt;0.001, HR 2.215), severe COVID-19 (p=0.017, HR 2.270) and admission to ICU (p&lt;0.001, HR 5.751) were risk factors for mortality at last day of follow up. There was no difference in OS rates in NHL vs CLL patients (p=0.306), nor in patients treated with or without BKIs (p=0.151). Mortality in ICU was 66% (CLL 61%, NHL 76%). Overall mortality rate decreased according to vaccination status, being 39% in unvaccinated patients, 32% and 26% in those having received one or two doses, respectively, and 20% in patients with a booster dose (p=0.245). Overall mortality rate dropped from 41% during the first semester of 2020 to 25% at the last semester of 2021. These results show increased severity and mortality from COVID-19 in LPDs patients treated with targeted drugs

    Simultaneous Onset of Haematological Malignancy and COVID: An Epicovideha Survey

    No full text
    Background: The outcome of patients with simultaneous diagnosis of haematological malignancies (HM) and COVID-19 is unknown and there are no specific treatment guidelines. Methods: We describe the clinical features and outcome of a cohort of 450 patients with simultaneous diagnosis of HM and COVID-19 registered in the EPICOVIDEHA registry between March 2020 to February 2022. Results: Acute leukaemia and lymphoma were the most frequent HM (35.8% and 35.1%, respectively). Overall, 343 (76.2%) patients received treatment for HM, which was delayed for longer than one month since diagnosis in 57 (16.6%). An overall response rate was observed in 140 (40.8%) patients after the first line of treatment. After a median follow-up of 35 days, overall mortality was 177/450 (39.3%); 30-day mortality was significantly higher in patients not receiving HM treatment (42.1%) than in those receiving treatment (27.4%, p = 0.004), either before and/or after COVID-19, or compared to patients receiving HM treatment at least after COVID-19 (15.2%, p &lt; 0.001). Age, severe/critical COVID-19, ≥2 comorbidities, and lack of HM treatment were independent risk factors for mortality, whereas a lymphocyte count &gt;500/mcl at COVID-19 onset was protective. Conclusions: HM treatment should be delivered as soon as possible for patients with simultaneous diagnosis of COVID-19 and HM requiring immediate therapy

    Breakthrough COVID-19 in vaccinated patients with hematologic malignancies: results from EPICOVIDEHA survey

    Get PDF
    Limited data have been published on the epidemiology and outcomes of breakthrough COVID-19 in patients with hematological malignancy (HM) after anti-SARS-CoV-2 vaccination. Adult HM who received at least one dose of anti-SARS-CoV-2 vaccine and diagnosed with breakthrough COVID-19 between January 2021 and March 2022 and registered in EPICOVIDEHA were included in this analysis. A total of 1548 cases were included, mainly with lymphoid malignancies (1181 cases, 76%). After viral genome sequencing in 753 cases (49%), Omicron variant was prevalent (517, 68.7%). Most of the patients received at least two vaccine doses before COVID-19 (1419, 91%), mostly mRNA-based (1377, 89%). Overall, 906 patients (59%) received specific treatment for COVID-19. After 30-days follow-up from COVID-19 diagnosis, 143 patients (9%) died. The mortality rate in patients with Omicron variant was of 7.9%, comparable to that reported for the other variants. The 30-day mortality rate was significantly lower than in the pre-vaccine era (31%). In the univariable analysis, older age (p&amp;lt;0.001), active HM (p&amp;lt;0.001), severe and critical COVID-19 (p=0.007 and p&amp;lt;0.001, respectively) were associated with mortality. Conversely, patients receiving monoclonal antibodies, even for severe or critical COVID-19, had a lower mortality rate (p&amp;lt;0.001). In the multivariable model, older age, active disease, critical COVID-19 and at least 2-3 comorbidities were correlated with a higher mortality, whereas the administration of monoclonal antibodies, alone (p&amp;lt;0.001) or combined with antivirals (p=0.009), was observed protective. While mortality is significantly lower than in the pre-vaccination era, breakthrough COVID-19 in HM is still associated with considerable mortality. Death rate was lower in patients who received monoclonal antibodies, alone or in combination with antivirals. EPICOVIDEHA (www.clinicaltrials.gov; National Clinical Trials identifier NCT04733729) is an international open web-based registry for patients with HMs infected with SARS-CoV-2.</jats:p
    corecore