9 research outputs found

    Adaptations des cyanobactéries marines du genre Synechococcus au gradient latitudinal de température

    Get PDF
    Marine picocyanobacteria are the most abundant photosynthetic organisms on Earth. Among them, Synechococcus displays a wide latitudinal distribution, ranging from the equator to polar circles, suggesting that they have evolved efficient adaptive strategies to cope with the latitudinal temperature gradient. The first part of this PhD work aimed at studying the thermophysiology of different lineages of the marine Synechococcus radiation. The combination of thermal acclimation and stress experiments with a phyloecology study allowed unveiling the existence of lineages physiologically specialized in distinct thermal niches, i.e. thermotypes. This work furthermore pointed out the importance of the capacities to optimize the photosynthetic apparatus efficiency for successful temperature acclimation. The thermostability of photosystem II, a key complex to the regulation of light energy utilisation, was compared within several marine Synechococcus strains. The results revealed that the photosynthetic antenna and its components have distinct thermostabilities, which are related to the strain isolation latitude. Structural homology models of phycobiliproteins thus revealed sites of molecular adaptation of the antenna to temperature. The function of the photosynthetic complexes is dependent on the fluidity of the membranes in which they are embedded, a physical factor regulated by temperature. The results a first lipidomic study suggested that the regulation of the composition in acyl chains plays an important role in temperature acclimation in marine Synechococcus. Furthermore, genomic comparative analyses revealed notably that marine Synechococcus have distinct sets of desaturase enzymes which have likely played a role in the colonization of different thermal niches. The results of this PhD thesis, which are discussed in the context of the Synechococcus adaptive evolution to the latitudinal gradient of temperature, raise new hypotheses for some future exciting work.Les picocyanobactĂ©ries marines sont les organismes photosynthĂ©tiques les plus abondants de la planĂšte. Parmi celles-ci, les Synechococcus marins sont dĂ©tectĂ©s de l’équateur aux cercles polaires, suggĂ©rant qu’ils ont Ă©voluĂ© des stratĂ©gies adaptatives trĂšs efficaces Ă  la tempĂ©rature. La premiĂšre partie de ce travail de thĂšse a visĂ© Ă  Ă©tudier la thermophysiologie de diffĂ©rentes lignĂ©es de la radiation des Synechococcus marins. Les rĂ©sultats d’expĂ©riences de variations thermiques Ă  court et long terme associĂ©es Ă  une Ă©tude de phyloĂ©cologie ont dĂ©montrĂ© l’existence de clades physiologiquement spĂ©cialisĂ©es dans des niches thermiques distinctes, i.e des thermotypes. Ces travaux ont de plus mis en Ă©vidence l’importance de l’optimisation de l’efficacitĂ© de l’appareil photosynthĂ©tique dans l’acclimatation Ă  la tempĂ©rature. Ainsi, la thermostabilitĂ© du photosystĂšme II, complexe clĂ© de la rĂ©gulation de l’énergie, a Ă©tĂ© comparĂ©e chez diffĂ©rentes souches de Synechococcus marins. Ces travaux ont rĂ©vĂ©lĂ© de grandes diffĂ©rences de thermostabilitĂ© de l’antenne photosynthĂ©tique et de ses constituants, qui sont corrĂ©lĂ©es Ă  la latitude d’isolement des souches. L’étude de modĂšles d’homologie de structure de phycobiliprotĂ©ines a permis de rĂ©vĂ©ler certaines des adaptations molĂ©culaires de ce complexe Ă  la tempĂ©rature. La fonctionnalitĂ© des complexes photosynthĂ©tiques est directement dĂ©pendante de la fluiditĂ© des membranes au sein desquelles ils sont insĂ©rĂ©s, un facteur physique trĂšs influencĂ© par la tempĂ©rature. Le troisiĂšme volet de cette thĂšse a permis de mieux comprendre les mĂ©canismes de rĂ©gulation des lipides membranaires chez les Synechococcus marins. Les rĂ©sultats montrent que la composition en acides gras joue un rĂŽle important durant l’acclimatation Ă  diffĂ©rentes tempĂ©ratures. De plus, par une approche de gĂ©nomique comparative, ce travail de thĂšse montre que les Synechococcus marins prĂ©sentent des Ă©quipements diffĂ©rents en enzymes dĂ©saturases, qui ont trĂšs probablement jouĂ© un rĂŽle dans la colonisation de diffĂ©rentes niches thermiques. Les rĂ©sultats de ce travail de thĂšse, discutĂ©s dans un contexte d’évolution de l’adaptation au gradient latitudinal de tempĂ©rature chez les picocyanobactĂ©ries marines, soulĂšvent de nouvelles hypothĂšses exaltantes pour les travaux futurs

    Adaptation des cyanobactéries marines du genre Synechococcus au gradient latitudinal de température

    No full text
    Marine picocyanobacteria are the most abundant photosynthetic organisms on Earth. Among them, Synechococcus displays a wide latitudinal distribution, ranging from the equator to polar circles, suggesting that they have evolved efficient adaptive strategies to cope with the latitudinal temperature gradient. The first part of this PhD work aimed at studying the thermophysiology of different lineages of the marine Synechococcus radiation. The combination of thermal acclimation and stress experiments with a phyloecology study allowed unveiling the existence of lineages physiologically specialized in distinct thermal niches, i.e. thermotypes. This work furthermore pointed out the importance of the capacities to optimize the photosynthetic apparatus efficiency for successful temperature acclimation. The thermostability of photosystem II, a key complex to the regulation of light energy utilisation, was compared within several marine Synechococcus strains. The results revealed that the photosynthetic antenna and its components have distinct thermostabilities, which are related to the strain isolation latitude. Structural homology models of phycobiliproteins thus revealed sites of molecular adaptation of the antenna to temperature. The function of the photosynthetic complexes is dependent on the fluidity of the membranes in which they are embedded, a physical factor regulated by temperature. The results a first lipidomic study suggested that the regulation of the composition in acyl chains plays an important role in temperature acclimation in marine Synechococcus. Furthermore, genomic comparative analyses revealed notably that marine Synechococcus have distinct sets of desaturase enzymes which have likely played a role in the colonization of different thermal niches. The results of this PhD thesis, which are discussed in the context of the Synechococcus adaptive evolution to the latitudinal gradient of temperature, raise new hypotheses for some future exciting work.Les picocyanobactĂ©ries marines sont les organismes photosynthĂ©tiques les plus abondants de la planĂšte. Parmi celles-ci, les Synechococcus marins sont dĂ©tectĂ©s de l’équateur aux cercles polaires, suggĂ©rant qu’ils ont Ă©voluĂ© des stratĂ©gies adaptatives trĂšs efficaces Ă  la tempĂ©rature. La premiĂšre partie de ce travail de thĂšse a visĂ© Ă  Ă©tudier la thermophysiologie de diffĂ©rentes lignĂ©es de la radiation des Synechococcus marins. Les rĂ©sultats d’expĂ©riences de variations thermiques Ă  court et long terme associĂ©es Ă  une Ă©tude de phyloĂ©cologie ont dĂ©montrĂ© l’existence de clades physiologiquement spĂ©cialisĂ©es dans des niches thermiques distinctes, i.e des thermotypes. Ces travaux ont de plus mis en Ă©vidence l’importance de l’optimisation de l’efficacitĂ© de l’appareil photosynthĂ©tique dans l’acclimatation Ă  la tempĂ©rature. Ainsi, la thermostabilitĂ© du photosystĂšme II, complexe clĂ© de la rĂ©gulation de l’énergie, a Ă©tĂ© comparĂ©e chez diffĂ©rentes souches de Synechococcus marins. Ces travaux ont rĂ©vĂ©lĂ© de grandes diffĂ©rences de thermostabilitĂ© de l’antenne photosynthĂ©tique et de ses constituants, qui sont corrĂ©lĂ©es Ă  la latitude d’isolement des souches. L’étude de modĂšles d’homologie de structure de phycobiliprotĂ©ines a permis de rĂ©vĂ©ler certaines des adaptations molĂ©culaires de ce complexe Ă  la tempĂ©rature. La fonctionnalitĂ© des complexes photosynthĂ©tiques est directement dĂ©pendante de la fluiditĂ© des membranes au sein desquelles ils sont insĂ©rĂ©s, un facteur physique trĂšs influencĂ© par la tempĂ©rature. Le troisiĂšme volet de cette thĂšse a permis de mieux comprendre les mĂ©canismes de rĂ©gulation des lipides membranaires chez les Synechococcus marins. Les rĂ©sultats montrent que la composition en acides gras joue un rĂŽle important durant l’acclimatation Ă  diffĂ©rentes tempĂ©ratures. De plus, par une approche de gĂ©nomique comparative, ce travail de thĂšse montre que les Synechococcus marins prĂ©sentent des Ă©quipements diffĂ©rents en enzymes dĂ©saturases, qui ont trĂšs probablement jouĂ© un rĂŽle dans la colonisation de diffĂ©rentes niches thermiques. Les rĂ©sultats de ce travail de thĂšse, discutĂ©s dans un contexte d’évolution de l’adaptation au gradient latitudinal de tempĂ©rature chez les picocyanobactĂ©ries marines, soulĂšvent de nouvelles hypothĂšses exaltantes pour les travaux futurs

    Adaptation of the marine cyanobacteria from the genus Synechococcus to the latitudinal gradient of temperature

    No full text
    Les picocyanobactĂ©ries marines sont les organismes photosynthĂ©tiques les plus abondants de la planĂšte. Parmi celles-ci, les Synechococcus marins sont dĂ©tectĂ©s de l’équateur aux cercles polaires, suggĂ©rant qu’ils ont Ă©voluĂ© des stratĂ©gies adaptatives trĂšs efficaces Ă  la tempĂ©rature. La premiĂšre partie de ce travail de thĂšse a visĂ© Ă  Ă©tudier la thermophysiologie de diffĂ©rentes lignĂ©es de la radiation des Synechococcus marins. Les rĂ©sultats d’expĂ©riences de variations thermiques Ă  court et long terme associĂ©es Ă  une Ă©tude de phyloĂ©cologie ont dĂ©montrĂ© l’existence de clades physiologiquement spĂ©cialisĂ©es dans des niches thermiques distinctes, i.e des thermotypes. Ces travaux ont de plus mis en Ă©vidence l’importance de l’optimisation de l’efficacitĂ© de l’appareil photosynthĂ©tique dans l’acclimatation Ă  la tempĂ©rature. Ainsi, la thermostabilitĂ© du photosystĂšme II, complexe clĂ© de la rĂ©gulation de l’énergie, a Ă©tĂ© comparĂ©e chez diffĂ©rentes souches de Synechococcus marins. Ces travaux ont rĂ©vĂ©lĂ© de grandes diffĂ©rences de thermostabilitĂ© de l’antenne photosynthĂ©tique et de ses constituants, qui sont corrĂ©lĂ©es Ă  la latitude d’isolement des souches. L’étude de modĂšles d’homologie de structure de phycobiliprotĂ©ines a permis de rĂ©vĂ©ler certaines des adaptations molĂ©culaires de ce complexe Ă  la tempĂ©rature. La fonctionnalitĂ© des complexes photosynthĂ©tiques est directement dĂ©pendante de la fluiditĂ© des membranes au sein desquelles ils sont insĂ©rĂ©s, un facteur physique trĂšs influencĂ© par la tempĂ©rature. Le troisiĂšme volet de cette thĂšse a permis de mieux comprendre les mĂ©canismes de rĂ©gulation des lipides membranaires chez les Synechococcus marins. Les rĂ©sultats montrent que la composition en acides gras joue un rĂŽle important durant l’acclimatation Ă  diffĂ©rentes tempĂ©ratures. De plus, par une approche de gĂ©nomique comparative, ce travail de thĂšse montre que les Synechococcus marins prĂ©sentent des Ă©quipements diffĂ©rents en enzymes dĂ©saturases, qui ont trĂšs probablement jouĂ© un rĂŽle dans la colonisation de diffĂ©rentes niches thermiques. Les rĂ©sultats de ce travail de thĂšse, discutĂ©s dans un contexte d’évolution de l’adaptation au gradient latitudinal de tempĂ©rature chez les picocyanobactĂ©ries marines, soulĂšvent de nouvelles hypothĂšses exaltantes pour les travaux futurs.Marine picocyanobacteria are the most abundant photosynthetic organisms on Earth. Among them, Synechococcus displays a wide latitudinal distribution, ranging from the equator to polar circles, suggesting that they have evolved efficient adaptive strategies to cope with the latitudinal temperature gradient. The first part of this PhD work aimed at studying the thermophysiology of different lineages of the marine Synechococcus radiation. The combination of thermal acclimation and stress experiments with a phyloecology study allowed unveiling the existence of lineages physiologically specialized in distinct thermal niches, i.e. thermotypes. This work furthermore pointed out the importance of the capacities to optimize the photosynthetic apparatus efficiency for successful temperature acclimation. The thermostability of photosystem II, a key complex to the regulation of light energy utilisation, was compared within several marine Synechococcus strains. The results revealed that the photosynthetic antenna and its components have distinct thermostabilities, which are related to the strain isolation latitude. Structural homology models of phycobiliproteins thus revealed sites of molecular adaptation of the antenna to temperature. The function of the photosynthetic complexes is dependent on the fluidity of the membranes in which they are embedded, a physical factor regulated by temperature. The results a first lipidomic study suggested that the regulation of the composition in acyl chains plays an important role in temperature acclimation in marine Synechococcus. Furthermore, genomic comparative analyses revealed notably that marine Synechococcus have distinct sets of desaturase enzymes which have likely played a role in the colonization of different thermal niches. The results of this PhD thesis, which are discussed in the context of the Synechococcus adaptive evolution to the latitudinal gradient of temperature, raise new hypotheses for some future exciting work

    Adaptive thermostability of light-harvesting complexes in marine picocyanobacteria

    No full text
    International audienceMarine Synechococcus play a key role in global oceanic primary productivity. Their wide latitudinal distribution has been attributed to the occurrence of lineages adapted to distinct thermal niches, but the physiological and molecular bases of this ecotypic differentiation remain largely unknown. By comparing six strains isolated from different latitudes, we showed that the thermostability of their light-harvesting complexes, called phycobilisomes (PBS), varied according to the average sea surface temperature at strain isolation site. Comparative analyses of thermal unfolding curves of the three phycobiliproteins (PBP) constituting PBS rods suggested that the differences in thermostability observed on whole PBSs relied on the distinct molecular flexibility and stability of their individual components. Phycocyanin was the least thermostable of all rod PBP, constituting a fragility point of the PBS under heat stress. Amino-acid composition analyses and structural homology modeling notably revealed the occurrence of two amino-acid substitutions, which might have a role in the observed differential thermotolerance of this phycobiliprotein among temperature ecotypes. We hypothesize that marine Synechococcus ancestors occurred first in warm niches and that during the colonization of cold, high latitude thermal niches, their descendants have increased the molecular flexibility of PBP to maintain optimal light absorption capacities, this phenomenon likely resulting in a decreased stability of these proteins. This apparent thermoadaptability of marine Synechococcus has most probably contributed to the remarkable ubiquity of these picocyanobacteria in the ocean

    Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus

    No full text
    International audienceMarine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant ÎČ-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation

    Thermoacclimation and genome adaptation of the membrane lipidome in marine Synechococcus

    No full text
    International audienceThe marine cyanobacteria of the genus Synechococcus are important primary producers, displaying a wide latitudinal distribution that is underpinned by diversification into temperature ecotypes. The physiological basis underlying these ecotypes is poorly known. In many organisms, regulation of membrane fluidity is crucial for acclimating to variations in temperature. Here, we reveal the detailed composition of the membrane lipidome of the model strain Synechococcus sp. WH7803 and its response to temperature variation. Unlike freshwater strains, membranes are almost devoid of C18, mainly containing C14 and C16 chains with no more than two unsaturations. In response to cold, we observed a rarely observed process of acyl chain shortening that likely induces membrane thinning, along with specific desaturation activities. Both of these mechanisms likely regulate membrane fluidity, facilitating the maintenance of efficient photosynthetic activity. A comprehensive examination of 53 Synechococcus genomes revealed clade-specific gene sets regulating membrane lipids. In particular, the genes encoding desaturase enzymes, which is a key to the temperature stress response, appeared to be temperature ecotype-specific, with some of them originating from lateral transfers. Our study suggests that regulation of membrane fluidity has been among the important adaptation processes for the colonization of different thermal niches by marine Synechococcus

    Unveiling membrane thermoregulation strategies in marine picocyanobacteria

    Get PDF
    International audienceThe wide latitudinal distribution of marine Synechococcus cyanobacteria partly relies on the differentiation of lineages adapted to distinct thermal environments. Membranes are highly thermosensitive cell components, and the ability to modulate their fluidity can be critical for the fitness of an ecotype in a particular thermal niche. We compared the thermophysiology of Synechococcus strains representative of major temperature ecotypes in the field. We measured growth, photosynthetic capacities and membrane lipidome variations. We carried out a metagenomic analysis of stations of the Tara Oceans expedition to describe the latitudinal distribution of the lipid desaturase genes in the oceans. All strains maintained efficient photosynthetic capacities over their different temperature growth ranges. Subpolar and cold temperate strains showed enhanced capacities for lipid monodesaturation at low temperature thanks to an additional, poorly regiospecific Delta 9-desaturase. By contrast, tropical and warm temperate strains displayed moderate monodesaturation capacities but high proportions of double unsaturations in response to cold, thanks to regiospecific Delta 12-desaturases. The desaturase genes displayed specific distributions directly related to latitudinal variations in ocean surface temperature. This study highlights the critical importance of membrane fluidity modulation by desaturases in the adaptive strategies of Synechococcus cyanobacteria during the colonization of novel thermal niches

    Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Synechococcus Strain WH7803

    No full text
    International audienceUnderstanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous highlight (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b 6 /f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria
    corecore