80 research outputs found

    Linking habitat quality with genetic diversity: a lesson from great bustards in Spain

    Get PDF
    P. 411-419The effects of habitat loss and fragmentation on the genetic structure and variability of wild populations have received wide empirical support and theoretical formalization. By contrast, the effects of habitat quality seem largely underinvestigated, partly due to technical difficulties in properly assessing habitat quality. In this study, we combine geographic information system (GIS)-based habitat-quality modelling with a landscape genetics approach based on mitochondrial DNA markers to evaluate the possible influence of habitat quality on the levels and distribution of genetic diversity in a range of natural populations (n = 15) of Otis tarda throughout Spain. Ninety-three percent of the population represented by our countrywide sample lives in good-quality habitats, while 4.5% and 2.5% occur respectively in intermediate and poor habitats. Habitat quality was highly correlated with patch size, population size and population density, indicating the reliability and predictive power of the habitat suitability model. Genetic diversity was significantly correlated with habitat quality, size and density of the population, but not with patch size. Three of a total of 20 existing matrilineages from the species’ current genetic pool are restricted to poor-quality habitats. This study therefore highlights the importance of considering both population genetics and habitat quality in a species of high conservation priority.S

    Identification of tandem repeat families from long-read sequences of Humulus lupulus

    Full text link
    Hop (Humulus lupulus L.) is known for its use as a bittering agent in beer and has a rich history of cultivation, beginning in Europe and now spanning the globe. There are five wild varieties worldwide, which may have been introgressed with cultivated varieties. As a dioecious species, its obligate outcrossing, non-Mendelian inheritance, and genomic structural variability have confounded directed breeding efforts. Consequently, understanding the hop genome represents a considerable challenge, requiring additional resources. In order to facilitate investigations into the transmission genetics of hop, we report here a tandem repeat discovery pipeline developed using k-mer filtering and dot plot analysis of PacBio long-read sequences from the hop cultivar Apollo. From this we identified 17 new and distinct tandem repeat sequence families, which represent candidates for FISH probe development. For two of these candidates, HuluTR120 and HuluTR225, we produced oligonucleotide FISH probes from conserved regions of and demonstrated their utility by staining meiotic chromosomes from wild hop, var. neomexicanus to address, for example, questions about hop transmission genetics. Collectively, these tandem repeat sequence families represent new resources suitable for development of additional cytogenomic tools for hop research

    The evolution of acoustic size exaggeration in terrestrial mammals

    Get PDF
    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator, and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production

    Female sexual preferences toward conspecific and hybrid male mating calls in two species of polygynous deer, Cervus elaphus and C. nippon

    Get PDF
    The behavioral processes at the basis of hybridization and introgression are understudied in terrestrial mammals. We use a unique model to test the role of sexual signals as a reproductive barrier to introgression by investigating behavioral responses to male sexual calls in estrous females of two naturally allopatric but reproductively compatible deer species, red deer and sika deer. Previous studies demonstrated asymmetries in acoustic species discrimination between these species: most but not all female red deer prefer conspecific over sika deer male calls while female sika deer exhibit no preference differences. Here, we extend this examination of acoustic species discrimination to the role of male sexual calls in introgression between parent species and hybrids. Using two-speaker playback experiments, we compared the preference responses of estrous female red and sika deer to male sexual calls from conspecifics versus red × sika hybrids. These playbacks simulate early secondary contact between previously allopatric species after hybridization has occurred. Based on previous conspecific versus heterospecific playbacks, we predicted that most female red deer would prefer conspecific calls while female sika deer would show no difference in their preference behaviors toward conspecific and hybrid calls. However, results show that previous asymmetries did not persist as neither species exhibited more preferences for conspecific over hybrid calls. Thus, vocal behavior is not likely to deter introgression between these species during the early stages of sympatry. On a wider scale, weak discrimination against hybrid sexual signals could substantially contribute to this important evolutionary process in mammals and other taxa

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    Get PDF
    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today

    Nucleocapsid protein of cell culture-adapted Seoul virus strain 80-39: Analysis of its encoding sequence, expression in yeast and immuno-reactivity

    No full text
    Seoul virus (SEOV) is a hantavirus causing a mild to moderate form of hemorrhagic fever with renal syndrome that is distributed mainly in Asia. The nucleocapsid (N) protein-encoding sequence of SEOV (strain 80-39) was RT-PCR-amplified and cloned into a yeast expression vector containing a galactose-inducible promoter. A survey of the pattern of synonymous codon preferences for a total of 22 N protein-encoding hantavirus genes including 13 of SEOV strains revealed that there is minor variation in codon usage by the same gene in different viral genomes. Introduction of the expression plasmid into yeast Saccharomyces cerevisiae resulted in the high-level expression of a hexahistidine-tagged N protein derivative. The nickel-chelation chromatography purified, yeast-expressed SEOV N protein reacted in the immunoblot with a SEOV-specific monoclonal antibody and certain HTNV- and PUUV-cross-reactive monoclonal antibodies. The immunization of a rabbit with the recombinant N protein resulted in the induction of a high-titered antibody response. In ELISA studies, the N protein was able to detect antibodies in sera of experimentally infected laboratory rats and in human anti-hantavirus-positive sera or serum pools of patients from different geographical origin. The yeast-expressed SEOV N protein represents a promising antigen for development of diagnostic tools in serology, sero prevalence studies and vaccine development

    Identification of tandem repeat families from long-read sequences of Humulus lupulus.

    No full text
    Hop (Humulus lupulus L.) is known for its use as a bittering agent in beer and has a rich history of cultivation, beginning in Europe and now spanning the globe. There are five wild varieties worldwide, which may have been introgressed with cultivated varieties. As a dioecious species, its obligate outcrossing, non-Mendelian inheritance, and genomic structural variability have confounded directed breeding efforts. Consequently, understanding the hop genome represents a considerable challenge, requiring additional resources. In order to facilitate investigations into the transmission genetics of hop, we report here a tandem repeat discovery pipeline developed using k-mer filtering and dot plot analysis of PacBio long-read sequences from the hop cultivar Apollo. From this we identified 17 new and distinct tandem repeat sequence families, which represent candidates for FISH probe development. For two of these candidates, HuluTR120 and HuluTR225, we produced oligonucleotide FISH probes from conserved regions of and demonstrated their utility by staining meiotic chromosomes from wild hop, var. neomexicanus to address, for example, questions about hop transmission genetics. Collectively, these tandem repeat sequence families represent new resources suitable for development of additional cytogenomic tools for hop research
    • …
    corecore