1,535 research outputs found

    Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    Get PDF
    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors

    The declining representativeness of the British party system, and why it matters

    Get PDF
    In a recent article, Michael Laver has explained ‘Why Vote-Seeking Parties May Make Voters Miserable’. His model shows that, while ideological convergence may boost congruence between governments and the median voter, it can reduce congruence between the party system and the electorate as a whole. Specifically, convergence can increase the mean distance between voters and their nearest party. In this article we show that this captures the reality of today’s British party system. Policy scale placements in British Election Studies from 1987 to 2010 confirm that the pronounced convergence during the past decade has left the Conservatives and Labour closer together than would be optimal in terms of minimising the policy distance between the average voter and the nearest major party. We go on to demonstrate that this comes at a cost. Respondents who perceive themselves as further away from one of the major parties in the system tend to score lower on satisfaction with democracy. In short, vote-seeking parties have left the British party system less representative of the ideological diversity in the electorate, and thus made at least some British voters miserable

    'Word from the street' : when non-electoral representative claims meet electoral representation in the United Kingdom

    Get PDF
    Taking the specific case of street protests in the UK – the ‘word from the street’– this article examines recent (re)conceptualizations of political representation, most particularly Saward’s notion of ‘representative claim’. The specific example of nonelectoral claims articulated by protestors and demonstrators in the UK is used to illustrate: the processes of making, constituting, evaluating and accepting claims for and by constituencies and audiences; and the continuing distinctiveness of claims based upon electoral representation. Two basic questions structure the analysis: first, why would the political representative claims of elected representatives trump the nonelectoral claims of mass demonstrators and, second, in what ways does the ‘perceived legitimacy’ of the former differ from the latter

    Inferring Core-Collapse Supernova Physics with Gravitational Waves

    Get PDF
    Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts of gravitational waves (GWs) that might be detected by the advanced generation of laser interferometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional dynamics at work at the core of a dying massive star and may provide direct evidence for the yet uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion mechanisms have predicted GW signals which have distinct structure in both the time and frequency domains. Motivated by this, we describe a promising method for determining the most likely explosion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector and linear waveform polarization for simplicity, we demonstrate that our method can distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc) and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc. Furthermore, we show that we can differentiate between models for rotating accretion-induced collapse of massive white dwarfs and models of rotating iron core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure

    Inference on inspiral signals using LISA MLDC data

    Full text link
    In this paper we describe a Bayesian inference framework for analysis of data obtained by LISA. We set up a model for binary inspiral signals as defined for the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte Carlo (MCMC) algorithm to facilitate exploration and integration of the posterior distribution over the 9-dimensional parameter space. Here we present intermediate results showing how, using this method, information about the 9 parameters can be extracted from the data.Comment: Accepted for publication in Classical and Quantum Gravity, GWDAW-11 special issu

    Status of the GEO600 gravitational wave detector

    Get PDF
    The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995.During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run

    On the complementarity of pulsar timing and space laser interferometry for the individual detection of supermassive black hole binaries

    Full text link
    Gravitational waves coming from Super Massive Black Hole Binaries (SMBHBs) are targeted by both Pulsar Timing Array (PTA) and Space Laser Interferometry (SLI). The possibility of a single SMBHB being tracked first by PTA, through inspiral, and later by SLI, up to merger and ring down, has been previously suggested. Although the bounding parameters are drawn by the current PTA or the upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory (NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper also addresses sequential detection beyond specific project constraints. We consider PTA-SKA, which is sensitive from 10^(-9) to p x 10^(-7) Hz (p=4, 8), and SLI, which operates from s x 10^(-5) up to 1 Hz (s = 1, 3). A SMBHB in the range 2x 10^(8) - 2 x 10^(9) solar masses (the masses are normalised to a (1+z) factor, the red shift lying between z = 0.2 and z=1.5) moves from the PTA-SKA to the SLI band over a period ranging from two months to fifty years. By combining three Super Massive Black Hole (SMBH)-host relations with three accretion prescriptions, nine astrophysical scenarios are formed. They are then related to three levels of pulsar timing residuals (50, 5, 1 ns), generating twenty-seven cases. For residuals of 1 ns, sequential detection probability will never be better than 4.7 x 10^(-4) y^(-2) or 3.3 x 10^(-6) y^(-2) (per year to merger and per year of survey), according to the best and worst astrophysical scenarios, respectively; put differently this means one sequential detection every 46 or 550 years for an equivalent maximum time to merger and duration of the survey. The chances of sequential detection are further reduced by increasing values of the s parameter (they vanish for s = 10) and of the SLI noise, and by decreasing values of the remnant spin. REST OF THE ABSTRACT IN THE PDF FILE.Comment: To appear in the Astrophysical Journa

    Report on the first round of the Mock LISA Data Challenges

    Get PDF
    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine data sets containing simulated gravitational wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. Here we describe the challenges, summarise the results, and provide a first critical assessment of the entries.Comment: Proceedings report from GWDAW 11. Added author, added reference, clarified some text, removed typos. Results unchanged; Removed author, minor edits, reflects submitted versio

    Exploring sex differences in attitudes towards the descriptive and substantive representation of women

    Get PDF
    This article unpacks the rationales that might be behind individual-level support for the idea that there ought to be more women present in political institutions. We outline two distinct rationales: the substantive position that sees an increase in women’s descriptive representation as important in bringing about a subsequent improvement in women’s substantive representation, or the justice-plus position that sees an increase in the descriptive representation of women as important for reasons of justice or other symbolic benefits. We find that women are more likely than men to support an increase in descriptive representation and that women are more likely to hold both the view that an increase in descriptive representation was desirable and that such an increase would improve the representation of women’s political interests. Men are found to be more likely to support an increase in descriptive representation but not relate descriptive representation to substantive representation in any way: the justice-plus rationale

    The Sensitivity of the Parkes Pulsar Timing Array to Individual Sources of Gravitational Waves

    Get PDF
    We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed study of the effects of fitting a pulsar timing model to non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA. We place a sky-averaged constraint on the merger rate of nearby (z<0.6z < 0.6) black-hole binaries in the early phases of coalescence with a chirp mass of 10^{10}\,\rmn{M}_\odot of less than one merger every seven years. The prospects for future gravitational-wave astronomy of this type with the proposed Square Kilometre Array telescope are discussed.Comment: fixed error in equation (4). [13 pages, 6 figures, 1 table, published in MNRAS
    corecore