23 research outputs found

    Temporal variations in river water surface elevation and slope captured by AirSWOT

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission aims to improve the frequency and accuracy of global observations of river water surface elevations (WSEs) and slopes. As part of the SWOT mission, an airborne analog, AirSWOT, provides spatially-distributed measurements of WSEs for river reaches tens to hundreds of kilometers in length. For the first time, we demonstrate the ability of AirSWOT to consistently measure temporal dynamics in river WSE and slope. We evaluate data from six AirSWOT flights conducted between June 7–22, 2015 along a ~90 km reach of the Tanana River, AK. To validate AirSWOT measurements, we compare AirSWOT WSEs and slopes against an in situ network of 12 pressure transducers (PTs). Assuming error-free in situ data, AirSWOT measurements of river WSEs have an overall root mean square difference (RMSD) of 11.8 cm when averaged over 1 km2 areas while measurements of river surface slope have an RMSD of 1.6 cm/km for reach lengths >5 km. AirSWOT is also capable of recording accurate river WSE changes between flight dates, with an RMSD of 9.8 cm. Regrettably, observed in situ slope changes that transpired between the six flights are well below AirSWOT's accuracy, limiting the evaluation of AirSWOT's ability to capture temporal changes in slope. In addition to validating the direct AirSWOT measurements, we compare discharge values calculated via Manning's equation using AirSWOT WSEs and slopes to discharge values calculated using PT WSEs and slopes. We define or calibrate the remaining discharge parameters using a combination of in situ and remotely sensed observations, and we hold these remaining parameters constant between the two types of calculations to evaluate the impact of using AirSWOT versus the PT observations of WSE and slope. Results indicate that AirSWOT-derived discharge estimates are similar to the PT-derived discharge estimates, with an RMSD of 13.8%. Additionally, 42% of the AirSWOT-based discharge estimates fall within the PT discharge estimates' uncertainty bounds. We conclude that AirSWOT can measure multitemporal variations in river WSE and spatial variations in slope with both high accuracy and spatial sampling, providing a compelling alternative to in situ measurements of regional-scale, spatiotemporal fluvial dynamics

    AirSWOT measurements of river water surface elevation and slope:Tanana River, AK

    Get PDF
    Fluctuations in water surface elevation (WSE) along rivers have important implications for water resources, flood hazards, and biogeochemical cycling. However, current in situ and remote sensing methods exhibit key limitations in characterizing spatiotemporal hydraulics of many of the world's river systems. Here we analyze new measurements of river WSE and slope from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission aimed at addressing limitations in current remotely sensed observations of surface water. To evaluate its capabilities, we compare AirSWOT WSEs and slopes to in situ measurements along the Tanana River, Alaska. Root-mean-square error is 9.0cm for WSEs averaged over 1km(2) areas and 1.0cm/km for slopes along 10km reaches. Results indicate that AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics. AirSWOT's high-precision measurements are valuable for hydrologic analysis, flood modeling studies, and for validating future SWOT measurements

    Derivation of High Spatial Resolution Albedo from UAV Digital Imagery:Application over the Greenland Ice Sheet

    Get PDF
    Measurements of albedo are a prerequisite for modeling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimeter resolution albedo products with accuracies of ?5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique could become increasingly common in field studies and used for a wide range of applications. These include the mapping of debris, dust, cryoconite and bioalbedo, and directly constraining surface energy balance models.publishersversionPeer reviewe

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    CryoSheds: a GIS Modeling Framework for Generating Hydrologic Watersheds for Cryo-Hydrologic Systems using Digital Elevation Models and Remote Sensing Observations

    No full text
    A semi-automated modeling framework for generating hydrographic watersheds for cryo-hydrologic systems using Geographic Information Systems (GIS) tools is presented. The framework derives two alternate types of watersheds i) hydraulic pressure potential (Shreve 1972; Cuffey & Paterson 2010; Banwell et al. 2013), which determines surface/subsurface flow paths from the hydrostatic equation, using surface and basal topography DEMs; and ii) surface (i.e. surface flow paths) as inferred from a surface topography DEM alone. The framework utilizes standard hydrologic modeling tools available in the ArcGIS 10.2 and the ArcPy library. Specifically, DEM depression filling, flow direction, flow accumulation, basin and watershed tools are used in conjunction with custom ArcPy routines to aggregate sub basins, identify hydrologic flow divides and delineate ice sheet hydraulic pressure potential and surface ice watersheds. Both watershed types are delineated for seven nested watersheds in southwest Greenland, derived from remotely sensed pour points along the Aussivigssuit River and its tributaries. The two alternate methods produce watersheds with dissimilar outcomes, particularly at higher elevations (670 m and above) on the ice sheet. For the Aussivigssuit River hydrologic network, surface DEM watersheds tend to be both larger in size and extend to higher elevations when compared to the hydraulic potential watersheds

    CryoSheds: a GIS modeling framework for delineating land-ice watersheds for the Greenland Ice Sheet

    No full text
    <p>Choice of watershed delineation technique is an important source of uncertainty for cryo-hydrologic studies of the Greenland Ice Sheet (GrIS), with different methods yielding different watersheds for a common pour point. First, this paper explores this uncertainty for the Akuliarusiarsuup Kuua River Northern Tributary, Western Greenland. Next, a standardized, semi-automated modeling framework for generating land-ice watersheds for GrIS land-terminating ice (henceforth referred to as CryoSheds) using geographic information systems (GIS) hydrologic modeling tools is presented. The framework uses ArcGIS and the ArcPy geoprocessing library to delineate two types of land-ice watersheds, namely those defined by: (1) a hydraulic pressure potential with varying water to ice overburden pressure ratios (<i>k-value</i>), which determines theoretical flow paths from the hydrostatic equation, using surface and bedrock digital elevation models (DEMs) and (2) a surface topography DEM alone. Lastly, a demonstration of the CryoSheds method is presented for seven remotely sensed proglacial pour points along the Aussivigssuit River (AR), Western Greenland, and its largest tributaries. GrIS meltwater runoff from these seven nested land-ice watersheds is estimated using Modele Atmospherique Regional (MAR) v.3.2 and runoff uncertainties due to watershed delineation parameter selection is estimated.</p
    corecore