171 research outputs found

    Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey

    Get PDF
    The study of ecological and behavioral processes has been revolutionized in the last two decades with the rapid development of biologging-science. Recently, using image-capturing devices, some pilot studies demonstrated the potential of understanding marine vertebrate movement patterns in relation to their proximate, as opposed to remote sensed environmental contexts. Here, using miniaturized video cameras and GPS tracking recorders simultaneously, we show for the first time that information on the immediate visual surroundings of a foraging seabird, the Cape gannet, is fundamental in understanding the origins of its movement patterns. We found that movement patterns were related to specific stimuli which were mostly other predators such as gannets, dolphins or fishing boats. Contrary to a widely accepted idea, our data suggest that foraging seabirds are not directly looking for prey. Instead, they search for indicators of the presence of prey, the latter being targeted at the very last moment and at a very small scale. We demonstrate that movement patterns of foraging seabirds can be heavily driven by processes unobservable with conventional methodology. Except perhaps for large scale processes, local-enhancement seems to be the only ruling mechanism; this has profounds implications for ecosystem-based management of marine areas

    Population dynamics of southern elephant seals : a synthesis of three decades of demographic research at Marion Island

    Get PDF
    Southern elephant seal Mirounga leonine numbers declined precipitously throughout most of their circumpolar distribution since the 1950s. A long-term intensive demographic programme was initiated in 1983 on the relatively small population of southern elephant seals at sub-Antarctic Marion Island in an attempt to identify causative mechanisms associated with this decline. Weaned pups have been tagged annually since 1983, and this has produced a large number of individuals of known identity. A regular resighting programme yielded a mark-recapture dataset that has been subjected to numerous survival-based models. This ongoing programme produced a substantial body of scientific literature on population growth patterns, vital rates (survival and fecundity) and population regulation in southern elephant seals, which are reviewed in this synthesis. We briefly describe the analytical framework common to much of the demographic research, highlight important conclusions concerning population regulation of elephant seals at Marion Island, and discuss priorities for future research.The Department of Environmental Affairs provided both financial and logistical support for research at Marion Island in earlier years. More recently the Department of Science and Technology provided the funding, managed by the National Research Foundation.http://www.tandfonline.com/loi/tams2

    First African Marine Mammal Colloquium, South Africa, May 2010

    Get PDF
    The African Marine Mammal Colloquium (AMMC) was initiated to provide a platform for increased collaboration and communication between researchers working on marine mammals in and around Africa. The first meeting of the AMMC was held at Kleinbaai, South Africa, in May 2010. Talks were presented by each of the 48 participants and a number of discussion groups were held. Several countries were represented but most presentations and discussions were centred on research within the host country. In all, 13 papers that were based on presentations at the AMMC were selected after peer-review to appear in a special issue of the African Journal of Marine Science. Its theme, ‘Conservation biology of marine mammals in the southern African subregion’, reflects both the geographical area represented in these papers and their common subject.http://www.tandfonline.com/loi/tams2

    Abundance of Indo-Pacific bottlenose dolphins (Tursiops aduncus) along the south coast of South Africa

    Get PDF
    Coastally distributed dolphin species are vulnerable to a variety of anthropogenic pressures, yet a lack of abundance data often prevents data-driven conservation management strategies from being implemented. We investigated the abundance of Indo-Pacific bottlenose dolphins (Tursiops aduncus) along the south coast of South Africa, from the Goukamma Marine Protected Area (MPA) to the Tsitsikamma MPA, between 2014 and 2016. During this period, 662.3h of boat-based photo-identification survey effort was carried out during 189 surveys. The sighting histories of 817 identified individuals were used to estimate abundance using capture-recapture modelling. Using open population (POPAN) models, we estimated that 2,155 individuals (95% CI: 1,873–2,479) occurred in the study area, although many individuals appeared to be transients. We recorded smaller group sizes and an apparent decline in abundance in a subset of the study area (Plettenberg Bay) compared to estimates obtained in 2002–2003 at this location. We recorded declines of more than 70% in both abundance and group size for a subset of the study area (Plettenberg Bay), in relation to estimates obtained in 2002–2003 at this location. We discuss plausible hypotheses for causes of the declines, including anthropogenic pressure, ecosystem change, and methodological inconsistencies. Our study highlights the importance of assessing trends in abundance at other locations to inform data-driven conservation management strategies of T. aduncus in South Africa.Supporting information: Fig S1. Survey tracks along the study area. Table S1. Search effort per section of the study area, year and season. Table S2. Model selection and abundance estimates for T. aduncus obtained from POPAN open population Jolly-Seber models.http://www.plosone.orgpm2020Mammal Research InstituteZoology and Entomolog

    Cryptic speciation in gentoo penguins is driven by geographic isolation and regional marine conditions: Unforeseen vulnerabilities to global change

    Get PDF
    The conservation of biodiversity is hampered by data deficiencies, with many new species and subspecies awaiting description or reclassification. Population genomics and ecological niche modelling offer complementary new tools for un-covering functional units of phylogenetic diversity. We hypothesize that phyloge-netically delineated lineages of gentoo penguins (Pygoscelis papua) distributed across Antarctica and sub-Antarctic Islands are subject to spatially explicit ecological con-ditions that have limited gene flow, facilitating genetic differentiation, and thereby speciation processes

    Exploring South Africa’s southern frontier: A 20-year vision for polar research through the South African National Antarctic Programme

    Get PDF
    Antarctica, the sub-Antarctic islands and surrounding Southern Ocean are regarded as one of the planet’s last remaining wildernesses, ‘insulated from threat by [their] remoteness and protection under the Antarctic Treaty System’1 . Antarctica encompasses some of the coldest, windiest and driest habitats on earth. Within the Southern Ocean, sub-Antarctic islands are found between the Sub-Antarctic Front to the north and the Polar Front to the south. Lying in a transition zone between warmer subtropical and cooler Antarctic waters, these islands are important sentinels from which to study climate change.2 A growing body of evidence3,4 now suggests that climatically driven changes in the latitudinal boundaries of these two fronts define the islands’ short- and long-term atmospheric and oceanic circulation patterns. Consequently, sub-Antarctic islands and their associated terrestrial and marine ecosystems offer ideal natural laboratories for studying ecosystem response to change.5 For example, a recent study6 indicates that the shift in the geographical position of the oceanic fronts has disrupted inshore marine ecosystems, with a possible impact on top predators. Importantly, biotic responses are variable as indicated by different population trends of these top predators.7,8 When studied collectively, these variations in species’ demographic patterns point to complex spatial and temporal changes within the broader sub-Antarctic ecosystem, and invite further examination of the interplay between extrinsic and intrinsic drivers

    Marine ecosystem assessment for the Southern Ocean: birds and marine mammals in a changing climate

    Get PDF
    The massive number of seabirds (penguins and procellariiformes) and marine mammals (cetaceans and pinnipeds) – referred to here as top predators – is one of the most iconic components of the Antarctic and Southern Ocean. They play an important role as highly mobile consumers, structuring and connecting pelagic marine food webs and are widely studied relative to other taxa. Many birds and mammals establish dense breeding colonies or use haul-out sites, making them relatively easy to study. Cetaceans, however, spend their lives at sea and thus aspects of their life cycle are more complicated to monitor and study. Nevertheless, they all feed at sea and their reproductive success depends on the food availability in the marine environment, hence they are considered useful indicators of the state of the marine resources. In general, top predators have large body sizes that allow for instrumentation with miniature data-recording or transmitting devices to monitor their activities at sea. Development of scientific techniques to study reproduction and foraging of top predators has led to substantial scientific literature on their population trends, key biological parameters, migratory patterns, foraging and feeding ecology, and linkages with atmospheric or oceanographic dynamics, for a number of species and regions. We briefly summarize the vast literature on Southern Ocean top predators, focusing on the most recent syntheses. We also provide an overview on the key current and emerging pressures faced by these animals as a result of both natural and human causes. We recognize the overarching impact that environmental changes driven by climate change have on the ecology of these species. We also evaluate direct and indirect interactions between marine predators and other factors such as disease, pollution, land disturbance and the increasing pressure from global fisheries in the Southern Ocean. Where possible we consider the data availability for assessing the status and trends for each of these components, their capacity for resilience or recovery, effectiveness of management responses, risk likelihood of key impacts and future outlook

    Aquatic birds have middle ears adapted to amphibious lifestyles

    Get PDF
    Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing

    Indian Ocean humpback dolphin (Sousa plumbea) movement patterns along the South African coast

    Get PDF
    1. The Indian Ocean humpback dolphin was recently uplisted to ‘Endangered’ in the recent South African National Red List assessment. Abundance estimates are available from a number of localized study sites, but knowledge of movement patterns and population linkage between these sites is poor. A national research collaboration, the SouSA project, was established in 2016 to address this key knowledge gap. Twenty identification catalogues collected between 2000 and 2016 in 13 different locations were collated and compared. 2. Photographs of 526 humpback dolphins (all catalogues and photos) were reduced to 337 individuals from 12 locations after data selection. Of these, 90 matches were found for 61 individuals over multiple sites, resulting in 247 uniquely, well‐marked humpback dolphins identified in South Africa. 3. Movements were observed along most of the coastline studied. Ranging distances had a median value of 120 km and varied from 30 km up to 500 km. Long‐term site fidelity was also evident in the data. Dolphins ranging along the south coast of South Africa seem to form one single population at the western end of the species' global range. 4. Current available photo‐identification data suggested national abundance may be well below previous estimates of 1000 individuals, with numbers possibly closer to 500. Bearing in mind the poor conservation status of the species in the country, the development of a national Biodiversity Management Plan aimed at ensuring the long‐term survival of the species in South Africa is strongly recommended. At the same time, increased research efforts are essential, particularly to allow for an in‐depth assessment of population numbers and drivers of changes therein. 5. The present study clearly indicates the importance of scientific collaboration when investigating highly mobile and endangered species.This collaborative research project was funded by the South African Network for Coastal and Oceanic Research (SANCOR), the National Research Foundation (NRF), and the University of Pretoria.http://wileyonlinelibrary.com/journal/aqc2019-02-01hj2018Mammal Research Institut
    • 

    corecore