205 research outputs found

    Non-invasive temperature monitoring: controlled nucleation as a case study

    Get PDF
    Freeze-drying is employed in pharmaceutical industry to preserve thermo-sensitive products. It is a cost intensive process and, for its optimisation, it is important to maximise the ice sublimation rate during primary drying, thus reducing cycle duration. At this purpose, it is fundamental to monitor the product temperature and keep it at a value lower than that at which melting or collapse occurs. The temperature monitoring is also important during the freezing stage as it influences the two subsequent drying stages. In particular, the temperature of ice nucleation determines the size of ice crystals and the morphology of the frozen cake, thus impacting on the final properties of the product. Moreover, as the nucleation of ice is a stochastic event and it is not certain that all the vials in the batch nucleate at the same temperature (allowing a non-homogeneous product structure and subsequent drying behaviour), several techniques have been proposed for inducing the nucleation at a certain temperature and time and make the process more cost efficient

    Decision trees to evaluate the risk of developing multiple sclerosis

    Get PDF
    Introduction: Multiple sclerosis (MS) is a persistent neurological condition impacting the central nervous system (CNS). The precise cause of multiple sclerosis is still uncertain; however, it is thought to arise from a blend of genetic and environmental factors. MS diagnosis includes assessing medical history, conducting neurological exams, performing magnetic resonance imaging (MRI) scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS, numerous treatments exist to address symptoms, decelerate disease progression, and enhance the quality of life for individuals with MS. Methods: This paper introduces a novel machine learning (ML) algorithm utilizing decision trees to address a key objective: creating a predictive tool for assessing the likelihood of MS development. It achieves this by combining prevalent demographic risk factors, specifically gender, with crucial immunogenetic risk markers, such as the alleles responsible for human leukocyte antigen (HLA) class I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible for natural killer lymphocyte receptors. Results: The study included 619 healthy controls and 299 patients affected by MS, all of whom originated from Sardinia. The gender feature has been disregarded due to its substantial bias in influencing the classification outcomes. By solely considering immunogenetic risk markers, the algorithm demonstrates an ability to accurately identify 73.24% of MS patients and 66.07% of individuals without the disease. Discussion: Given its notable performance, this system has the potential to support clinicians in monitoring the relatives of MS patients and identifying individuals who are at an increased risk of developing the disease

    Risk of aortic dissection in patients with ascending aorta aneurysm: a new biological, morphological, and biomechanical network behind the aortic diameter

    Get PDF
    Thoracic aortic aneurysm represents a deadly condition, particularly when it evolves into rupture and dissection. Proper surgical timing is the key to positively influencing the survival of patients with this pathology. According to the most recent guidelines, ascending aorta size ≥ 55 mm and a rate of growth ≥ 0.5 cm per year are the most important factors for surgical indication. Nevertheless, a lot of evidence show that aortic ruptures and dissections might occur also in small size ascending aorta. In this review, we sought to analyze a new biological and morphological network behind the aortic diameter that need to be considered in order to identify the portion of patients with thoracic aortic aneurysm who are at increased risk of aortic complications, despite current aortic guidelines not advising surgical intervention in this group

    Circulating Levels of Ferritin, RDW, PTLs as Predictive Biomarkers of Postoperative Atrial Fibrillation Risk after Cardiac Surgery in Extracorporeal Circulation

    Get PDF
    Postoperative atrial fibrillation (POAF) is the most common arrhythmia after cardiac surgery in conventional extracorporeal circulation (CECC), with an incidence of 15-50%. The POAF pathophysiology is not known, and no blood biomarkers exist. However, an association between increased ferritin levels and increased AF risk, has been demonstrated. Based on such evidence, here, we evaluated the effectiveness of ferritin and other haematological parameters as POAF risk biomarkers in patients subjected to cardiac surgery. We enrolled 105 patients (mean age = 70.1 +/- 7.1 years; 70 men and 35 females) with diverse heart pathologies and who were subjected to cardiothoracic surgery. Their blood samples were collected and used to determine hematological parameters. Electrocardiographic and echocardiographic parameters were also evaluated. The data obtained demonstrated significantly higher levels of serum ferritin, red cell distribution width (RDW), and platelets (PLTs) in POAF patients. However, the serum ferritin resulted to be the independent factor associated with the onset POAF risk. Thus, we detected the ferritin cut-off value, which, when >= 148.5 ng/mL, identifies the subjects at the highest POAF risk, and with abnormal ECG atrial parameters, such as PW indices, and altered structural heart disease variables. Serum ferritin, RDW, and PTLs represent predictive biomarkers of POAF after cardiothoracic surgery in CECC; particularly, serum ferritin combined with anormal PW indices and structural heart disease variables can represent an optimal tool for predicting not only POAF, but also the eventual stroke onset

    Investigation of the Complexes Formed between PARP1 Inhibitors and PARP1 G-Quadruplex at the Gene Promoter Region

    Get PDF
    DNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. Several PARP1 inhibitors have been recently developed and approved for clinical treatments. We envisaged that PARP inhibition could be potentiated by simultaneously modulating the expression of PARP 1 and the enzyme activity, by a two-pronged strategy. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter has been recently identified. In this study, we explored the potential binding of clinically approved PARP1 inhibitors to the G-quadruplex structure found at the gene promoter region. The results obtained by NMR, CD, and fluorescence titration confirmed by molecular modeling demonstrated that two out the four PARP1 inhibitors studied are capable of forming defined complexes with the PARP1 G-quadruplex. These results open the possibility of exploring the development of better G-quadruplex binders that, in turn, may also inhibit the enzyme

    Decision trees to evaluate the risk of developing multiple sclerosis

    Get PDF
    IntroductionMultiple sclerosis (MS) is a persistent neurological condition impacting the central nervous system (CNS). The precise cause of multiple sclerosis is still uncertain; however, it is thought to arise from a blend of genetic and environmental factors. MS diagnosis includes assessing medical history, conducting neurological exams, performing magnetic resonance imaging (MRI) scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS, numerous treatments exist to address symptoms, decelerate disease progression, and enhance the quality of life for individuals with MS.MethodsThis paper introduces a novel machine learning (ML) algorithm utilizing decision trees to address a key objective: creating a predictive tool for assessing the likelihood of MS development. It achieves this by combining prevalent demographic risk factors, specifically gender, with crucial immunogenetic risk markers, such as the alleles responsible for human leukocyte antigen (HLA) class I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible for natural killer lymphocyte receptors.ResultsThe study included 619 healthy controls and 299 patients affected by MS, all of whom originated from Sardinia. The gender feature has been disregarded due to its substantial bias in influencing the classification outcomes. By solely considering immunogenetic risk markers, the algorithm demonstrates an ability to accurately identify 73.24% of MS patients and 66.07% of individuals without the disease.DiscussionGiven its notable performance, this system has the potential to support clinicians in monitoring the relatives of MS patients and identifying individuals who are at an increased risk of developing the disease

    The human telomeric protein hTRF1 induces telomere-specific nucleosome mobility

    Get PDF
    Human telomeres consist of thousands of base pairs of double-stranded TTAGGG repeats, organized by histone proteins into tightly spaced nucleosomes. The double-stranded telomeric repeats are also specifically bound by the telomeric proteins hTRF1 and hTRF2, which are essential for telomere length maintenance and for chromosome protection. An unresolved question is what role nucleosomes play in telomere structure and dynamics and how they interact and/or compete with hTRF proteins. Here we show that hTRF1 specifically induces mobility of telomeric nucleosomes. Moreover, Atomic Force Microscopy (AFM) imaging shows that hTRF1 induces compaction of telomeric DNA only in the presence of a nucleosome, suggesting that this compaction occurs through hTRF1–nucleosome interactions. Our findings reveal an unknown property of hTRF1 that has implications for understanding telomere structure and dynamics

    A higher-order entity formed by the flexible assembly of RAP1 with TRF2

    Get PDF
    Essonne committee of the Ligue contre le cancer M18756 M22897 Foundation ARC pour la Recherche sur le Cancer SFI20121205503International audienceTelomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shel-terin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question is how its interaction may influence TRF2 properties and regulate its capacity to bind multiple proteins. Through a combination of biochemical, biophysical and structural approaches, we unveiled a unique mode of assembly between RAP1 and TRF2. The complete interaction scheme between the full-length proteins involves a complex biphasic interaction of RAP1 that directly affects the binding properties of the assembly. These results reveal how a non-DNA binding protein can influence the properties of a DNA-binding partner by mutual conformational adjustments
    corecore