8 research outputs found

    Levodopa improves motor deficits but can further disrupt cognition in a macaque parkinson model

    No full text
    International audienceBACKGROUND:Levodopa effectively relieves motor symptoms in Parkinson's disease (PD), but has had inconsistent effects on cognition, even worsening some aspects of cognitive functioning. Therefore, remediation of PD cognitive deficits is a major unmet need. However, drug development efforts have been hampered by lack of an animal model in which motor and cognitive deficits can be examined simultaneously.METHODS:Cynomolgus monkeys were trained to perform cognitive tasks and then chronically exposed to MPTP to slowly produce cognitive and motor deficits of parkinsonism.RESULTS:Administration of L-dopa to these animals dose dependently improved motor functioning, but did not significantly improve cognitive performance. At doses that maximally improved motor function, additional cognitive deficits were observed. The present model of MPTP-induced parkinsonism recapitulates important motor and cognitive aspects of PD. Results with L-dopa mirror data derived from PD patients.CONCLUSION:This model should allow more efficient testing of potential PD therapeutics to evaluate motor and cognitive functions simultaneously. © 2012 Movement Disorder Society

    Effects of memantine and galantamine on cognitive performance in aged rhesus macaques.

    No full text
    International audienceCurrent pharmacotherapies for Alzheimer's disease (AD) are focused on improving performance of daily activities, personal care, and management of problematic behaviors. Both memantine, a noncompetitive N-methyl-D-aspartate channel blocker and galantamine, a selective acetylcholinesterase inhibitor, are currently prescribed as symptomatic therapies for AD. However, drugs that progressed directly from testing in rodent models to testing in AD patients in clinical trials failed to demonstrate consistent effects on cognitive symptoms. Considering the lack of nonhuman primate data on the effects of memantine and galantamine alone or in combination on cognitive dysfunction in aged nonhuman primates, the present study examined how closely data derived from aged nonhuman primates reflects data obtained in humans. Mild beneficial effects on aspects of cognitive performance in aged primates were found, in general agreement with the human clinical experience with these drugs but in contrast to the more positive effects reported in the rodent literature. These data suggest that the nonhuman primate might have more predictive validity for drug development in this area than comparable rodent assays

    Anti-dyskinetic effect of anpirtoline in animal models of L-DOPA-induced dyskinesia

    No full text
    International audienceThe serotonin system has emerged as a potential target for anti-dyskinetic therapy in Parkinson's disease. In fact, serotonin neurons can convert L-DOPA into dopamine, and mediate its synaptic release. However, they lack a feedback control mechanism able to regulate synaptic dopamine levels, which leads to un-physiological stimulation of post-synaptic striatal dopamine receptors. Accordingly, drugs able to dampen the activity of serotonin neurons can suppress L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Here, we investigated the ability of the 5-HT1A/1B receptor agonist anpirtoline to counteract L-DOPA-induced dyskinesia in L-DOPA-primed 6-OHDA-lesioned rats and MPTP-treated macaques. Results suggest that anpirtoline dose-dependently reduced dyskinesia both in rats and monkeys; however, the effect in MPTP-treated macaques was accompanied by a worsening of the Parkinson's disease score at significantly effective doses (1.5 and 2.0mg/kg). At a lower dose (0.75mg/kg), anpirtoline markedly reduced dyskinesia in 4 out of 5 subjects, but statistical significance was prevented by the presence of a non-responsive subject. These results provide further evidence that the serotonin neurons contribute both to the pro-dyskinetic effect of L-DOPA and to its therapeutic efficacy in the rat and monkey models of Parkinson's disease

    The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model

    No full text
    International audienceBACKGROUND:Blocking metabotropic glutamate receptor type 5 (mGluR5) has been proposed as a target for levodopa-induced dyskinesias (LID) in Parkinson's disease (PD). We assessed the effect on LID of dipraglurant, a potent selective mGluR5 receptor negative allosteric modulator in the gold-standard LID macaque model.METHODS:Dipraglurant (3, 10, and 30 mg/kg, by mouth) was tested in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) macaque model of LID in a four-way crossover, single-dose, controlled study (n = 8).RESULTS:Dipraglurant inhibited dyskinesias in the LID macaque model, with best effect reached at 30 mg/kg dose with no alteration of levodopa efficacy.CONCLUSION:Acute challenges of dipraglurant were efficacious on choreic and dystonic LID in the MPTP-macaque model. Dipraglurant pharmacokinetic variables were similar to those of levodopa, suggesting that both drugs can be co-administered simultaneously in further studies

    Vector-mediated L-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease

    No full text
    Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication.status: publishe

    Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease

    No full text
    Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication
    corecore