85 research outputs found

    Strong Mixing and Recirculation in the Northwestern Argentine Basin

    Get PDF
    The Atlantic component of the Meridional Overturning Circulation (AMOC) is a key contributor to the global meridional transport of volume, salt, and heat, and thus plays a central role in global climate. As part of ongoing efforts to monitor the intensity and variability of the AMOC in the South Atlantic, hydrographic sections have been regularly occupied since 2009 near the western boundary along a zonal line at 34.5°S. Here this high-quality, high-resolution data set is analyzed to establish the average hydrographic conditions of the northwestern Argentine Basin and the water mass spatial and temporal variability. The water mass analysis also reveals the pathways of the flow in this region, which are further corroborated by full-depth direct velocity measurements. The repeated hydrographic sections capture an extremely rich vertical structure, characterized by seven distinct water mass layers of northern and southern origin, each with unique property signatures. Almost all of these layers exhibit a sharp zonally banded structure, which is indicative of recirculation cells offshore from the western boundary. The circulation at intermediate levels includes a previously undetected recirculation cell confined very close to the western boundary and superimposed on the classical intermediate water pathway beneath the South Atlantic subtropical gyre. The deep level flow is characterized by the Deep Western Boundary Current (DWBC) and a northward recirculation ~500 km east from the slope.Fil: Valla, Daniel. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Piola, Alberto Ricardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Meinen, Christopher S.. Atlantic Oceanographic and Meteorological Laboratory; Estados UnidosFil: Campos, Edmo. Universidade de Sao Paulo; Brasi

    The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf Circulation

    Get PDF
    The oceanic circulation over the southwestern Atlantic shelf is influenced by large tidal amplitudes, substantial freshwater discharges, high wind speeds and – most importantly – by its proximity to two of the largest western boundary currents of the world ocean: the Brazil and Malvinas currents. This review article aims to discriminate the dynamical processes controlling the interaction between this extensive shelf region and the deep-ocean. The discussion is focused on two broad regions: the South Brazil Bight to the north, and Patagonia to the south. The exchanges between the Brazil Current and the South Brazil Bight are characterized by the intermittent development of eddies and meanders of the Brazil Current at the shelfbreak. However, it is argued that this is not the only – nor the most important – influence of the Brazil Current on the shelf. Numerical simulations show that the thermohaline structure of the South Brazil Bight can be entirely ascribed to steady state, bottom boundary layer interactions between the shelf and the Brazil Current. The Malvinas Current does not show the development of eddies and meanders, but its influence on the Patagonian shelf is not less important. Models and observations indicate that the Malvinas Current not only controls the shelfbreak dynamics and cross-shelf exchanges but also influences the circulation in the shelf's interior.Fil: Matano, Ricardo. Oregon State University; Estados UnidosFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad Nacional del Sur; ArgentinaFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval. Centro Arg.de OceanografĂ­a; Argentina. Universidad de Buenos Aires; Argentin

    Near inertial oscillations at the shelf off northern Patagonia

    Get PDF
    Quatro sĂ©ries temporais de correntes obtidas prĂłximas a 43°S sobre a plataforma continental da PatagĂŽn ia, coletadas entre Setembro/1991 e Agosto/1992, foram filtradas com frequĂȘncias de corte de 0.049 e 0.068 ciclos por hora (cph) para extrair a componente quase inercial. As sĂ©ries temporais filtradas tĂȘm somente uma pequena atenuação de amplitude quando comparadas aos dados originais e a fase nĂŁo foi alterada. Em dois fundeios costeiros, onde a coluna d’água Ă© fracamente estratificada a energia contida na banda inercial Ă© desprezĂ­vel. Sobre plataforma externa o pico inercial Ă© largo, e velocidades mĂĄximas sĂŁo > 25 cm s-1. O vetor velocidade horizontal Ă© quase polarizado circularmente (excentricidade de 1.04) e gira em sentido anti-horĂĄrio com uma freqĂŒĂȘncia um pouco maior que a freqĂŒĂȘncia inercial local. A direção de propagação Ă© para 105° relativos ao norte verdadeiro, aproximadamente perpendicular Ă  costa. A correolação complexa entre correntes filtradas nas profundidades de 17 e 67 m tem uma magnitude de 0.83 e uma diferença de fase de 176°, indicando que o fluxo Ă© dominado pelo primeiro modo baroclĂ­nico. A taxa entre as amplitudes acima e abaixo da picnoclina Ă© controlada pela profundidade da picnoclina, como previsto por um modelo de duas camadas. O modelo simples de Pollard & Millard (1970), forçado com o vento de Puerto Madryn, reproduziu muitos dos fatores observados das correntes inerciais na camada superficial. A ausĂȘncia de oscilaçÔes inerciais sobre plataforma externa durante o inverno, e a reduzida amplitude costeira durante o perĂ­odo de amostragem, sĂŁo associadas portanto Ă  reduzida estratificação da coluna de ĂĄgua.Four current time series collected near 43°S on the continental shelf off Patagonia from September 1991 to August 1992 have been band pass filtered with cutoff frequencies of 0.049 and 0.068 cycles per hour (cph) to extract the near-inertial component. The filtered time series have only small amplitude attenuation when compared to the original data and phase is not changed. At two near-shore moorings, where the water column is poorly stratified the energy contained in the inertial band is negligible. At mid-shelf the spectral peak of the inertial band is large and maximum speeds are > 25 cm s-1. The horizontal velocity vector is nearly circularly polarized (eccentricity of 1.04) and rotates counterclockwise with a frequency a few percent greater than the local inertial frequency. The propagation direction is to 105°T, approximately perpendicular to the co ast. The complex correlation between filtered currents at 17 and 67 m depth has a magnitude of 0.83 and a phase difference of 176°, indicating that the flow is dominated by the first baroclinic mode. The ratio between observed amplitudes above and below the pycnocline is controlled by pycnocline depth, as predicted by a two-layer model. The simple model of Pollard and Millard (1970) forced with wind data from Puerto Madryn reproduced many of the observed features of the inertial currents in the surface layer. The lack of inertial oscillations in the mid-shelf during Austral winter and the reduced amplitude near the coast throughout the sampling period, are associated to the reduced stratification of the water column.Fil: Rivas, Andres Lujan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico; ArgentinaFil: Piola, Alberto Ricardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Satellite Altimetry and Current-Meter Velocities in the Malvinas Current at 41°S: Comparisons and Modes of Variations

    Get PDF
    Three year long current-meter arrays were deployed in the Malvinas Current at 418S below a satellite altimeter track at about 10 years intervals. Surface geostrophic velocities (SGV) derived from satel- lite altimetric data are compared with the in situ velocities at the upper current meter (􏰁300 m). Multisatel- lite gridded SGV compare better with in situ observations than along-track SGV. In spite of the proximity of the moorings to the complex Brazil-Malvinas Confluence (BMC) region, satellite SGV are significantly corre- lated with the 20 day low-passed in situ velocities (0.85 for along-isobaths velocities, 0.8 for cross-isobaths velocities). The recent in situ measurement period (2014?2015) stands out in the altimetry record with a long-lasting (4 months) high level of eddy kinetic energy at the mooring site and a southernmost location of the Subantarctic Front (SAF). The first two modes of variations of sea level anomaly (SLA) over the BMC remarkably match the first two modes of the low-passed in situ velocities. The first mode is associated with a latitudinal migration of the SAF, and the second with a longitudinal displacement of the Brazil Current overshoot. The two modes dominate the 24 year long record of SLA in the BMC, with energy peaks at the annual and semiannual periods for the first mode and at 3?5 months for the second mode. The SLA over the Southwest Atlantic was regressed onto the two confluence modes of SLA variations and showed remarkable standing wave train like structures in the Argentine Basin.Fil: Ferrari, Ramiro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la AtmĂłsfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la AtmĂłsfera; ArgentinaFil: Artana, Camila Indira. Universite de Paris VI; FranciaFil: Saraceno, Martin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la AtmĂłsfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la AtmĂłsfera; ArgentinaFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Provost, Christine. Universite de Paris VI; Franci

    The surface salinity maximum of the South Atlantic

    Get PDF
    Like most other ocean basins, the maximum sea surface salinity region (MSR) in the South Atlantic shows a large displacement from the region of maximum difference between evaporation and precipitation (E-P), suggesting that ocean processes play a key role in determining the location of the MSR. We use outputs from a general circulation model (ECCO v4r3) to analyze the mixed layer salinity balance and disentangle the interaction of atmospheric forcing and oceanic processes in both regions. The MSR balance is dominated by evaporative surface fluxes and entrainment, while advection and diffusion play a secondary role. On the other hand, in the region of maximum E-P, the high surface freshwater loss is partially compensated by horizontal advection of low salinity waters, which is responsible for decreasing the salinity below that observed in the MSR. Using a particle tracking model, we find that MSR waters originate mostly from re-circulation in the Tropical South Atlantic and from the Tropical North Atlantic and Indian Oceans. After reaching the MSR, most of those waters flow southward in austral summer along the Brazil Current (1.6 Sv, 1 Sv = 106 m3 s−1), and northward in winter along the North Brazil Current (3.5 Sv). This seasonal variability in the fate of the salty water is modulated by the seasonal migration of the South Equatorial Current bifurcation region. Tracking of particles released at the base of the MSR mixed layer shows a subducted salt river with an estimated transport of 2.6 Sv on the 25.2 kg m−3 neutral density surface that flows northward along the North Brazil Current and retroflects just north of the equator as part of the Equatorial Undercurrent. These high-salinity waters are a significant contributor to the upper limb of the Atlantic meridional overturning circulation and the eastern Tropical Atlantic and their variability.Fil: Aubone, N.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; ArgentinaFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Piola, Alberto Ricardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; Argentina. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Cross-Shelf Exchange in the Southwestern Atlantic Shelf: Climatology and Extreme Events

    Get PDF
    The variability and drivers of the cross-shelf exchanges between the Southwestern Atlantic shelf and the open ocean from 30 to 40°S are analyzed using a high-resolution ocean model reanalysis at daily resolution. The model's performance was first evaluated using altimetry data, and independent mooring and hydrographic data collected in the study area. Model transports are in overall good agreement with all other estimates. The record-mean (1993–2018) cross-shore transport is offshore, 2.09 ± 1.60 Sv. 73% of the shelf-open ocean exchange occurs in the vicinity of Brazil-Malvinas Confluence (~38°S) and 20% near 32°S. This outflow is mostly contributed by northward alongshore transport through 40°S (63%) and the remaining by southward transport through 30°S (37%). The cross-shore flow presents weak seasonal variations, with a maximum in austral summer, and high variability at subannual and weekly time scales. The latter is mainly associated with abrupt wind changes generated by synoptic atmospheric systems. Alongshore wind variations set up sea-level changes in the inner shelf which in turn drive large anomalies in the associated geostrophic alongshore flow. The difference in inner shelf sea-level anomalies at 30 and 40°S is a good indicator of cross-shelf exchange at seasonal and shorter time scales. Episodes of extreme offshore transport that reach up to 9.45 Sv and last about 2 days are driven by convergence of these alongshore flows over the shelf. Large exports of shelf waters lead to freshening of the upper open ocean as revealed by in-situ and satellite observations. In contrast, onshore extreme events drive open ocean water intrusions of up to 6.53 Sv and last <4 days. These inflows, particularly the subtropical waters from the Brazil Current, induce a substantial salinification of the outer shelf.Fil: Berden, Giuliana. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; ArgentinaFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; ArgentinaFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentin

    Interannual Variability and Trends of Sea Surface Temperature Around Southern South America

    Get PDF
    The interannual variability and trends of sea surface temperature (SST) around southern South America are studied from 1982 to 2017 using monthly values of the Optimally Interpolation SST version 2 gridded database. Mid-latitude (30°–50°S) regions in the eastern South Pacific and western South Atlantic present moderate to intense warming (~0.4°C decade−1), while south of 50°S the region around southern South America presents moderate cooling (~ −0.3°C decade−1). Two areas of statistically significant trends of SST anomalies (SSTa) with opposite sign are found on the Patagonian Shelf over the southwest South Atlantic: a warming area delimited between 42 and 45°S (Northern Patagonian Shelf; NPS), and a cooling area between 49 and 52°S (Southern Patagonian Shelf; SPS). Between 1982 and 2017 the warming rate has been 0.15 ± 0.01°C decade−1 representing an increase of 0.52°C at NPS, and the cooling rate has been –0.12 ± 0.01°C decade−1 representing a decrease of 0.42°C at SPS. On both regions, the largest trends are observed during 2008–2017 (0.35 ± 0.02°C decade−1 at NPS and –0.27 ± 0.03°C decade−1 at SPS), while the trends in 1982–2007 are non-significant, indicating the record-length SSTa trends are mostly associated with the variability observed during the past 10 years of the record. The spectra of the records present significant variance at interannual time scales, centered at about 80 months (~6 years). The observed variability of SSTa is studied in connection with atmospheric forcing (zonal and meridional wind components, wind speed, wind stress curl and surface heat fluxes). During 1982–2007, the local meridional wind explains 25–30% of the total variance at NPS and SPS on interannual time scales. During 2008–2017, the SSTa at NPS is significantly anticorrelated with the local zonal wind (r = –0.85), while at SPS it is significantly anticorrelated with the meridional wind (r = –0.61). Our results show that a substantial fraction of the interannual variability of SSTa around southern South America can be described by the first three empirical orthogonal function (EOF) modes which explain 28, 16, and 12% of the variance, respectively. The variability of the three EOF principal components time series is associated with the combined variability of El Niño–Southern Oscillation, the Interdecadal Pacific Oscillation and the Southern Annular Mode.Fil: Risaro, Daniela BelĂ©n. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval. Departamento OceanografĂ­a; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Chidichimo, MarĂ­a Paz. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval. Departamento OceanografĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval. Departamento OceanografĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; Argentin

    On the variability of tidal fronts on a macrotidal continental shelf, Northern Patagonia, Argentina

    Get PDF
    Tidal fronts are associated with the transition between homogeneous and vertically stratified water and characterized by the simultaneous availability of light and nutrients that enhance the growth of marine productivity. We study the variability in the position of two tidal fronts located in Patagonia Argentina: the San Matías and Valdés fronts. The rate of tidal dissipation in these regions is among the highest of the world ocean. The study is based on the analysis of over 1200 satellite derived sea surface temperature images. The results indicate that the mean monthly position of both fronts is strongly linked to the characteristics of the bottom topography. In response to increasing surface heat flux the fronts displace toward shallower areas. Similarly, a slight displacement towards deeper waters is observed when the heat flux decreases. High frequency variability is revealed by the standard deviation around monthly averages. At the mouth of San Matías gulf, the front location variability in the spring-neap cycle is around 10 km, while east of Valdés Peninsula the fortnightly cycle is masked by high frequency fluctuations (~30 km) governed by meanders and meso-scale filaments. A simple conceptual model is proposed that suggests that the mean frontal position is determined by the bottom topography while its seasonal variability is driven by the surface heat flux, and the front intensity is modulated by the spring-neap transition.Fil: Pisoni, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Rivas, Andres Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Universidad Nacional de la Patagonia; ArgentinaFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Distribution of sea-air CO 2 fluxes in the Patagonian Sea: Seasonal, biological and thermal effects

    Get PDF
    Sea-air CO2 fluxes (FCO2) in the Patagonian Sea (PS) were studied using observations collected in 2000-2006. Based on the PS frontal structures and the thermal and biological contributions to FCO2 we present a regional subdivision between distinct regimes that provide new insights on the processes that control these fluxes. The coastal regime (CR) is a net source of atmospheric CO2 (4.9 x 10-3mol.m-2.d-1) while the open shelf regime (SHR) is a net CO2 sink (-6.0 x 10-3mol.m-2.d-1). The interface between these two regions closely follows the location of along-shore fronts. In addition, based on the nature of the processes that drive the FCO2, the PS is subdivided between northern (NR) and southern (SR) regions. Both, NR and SR are CO2 sinks, but the CO2 uptake is significantly higher in NR (-6.4 x 10-3mol.m-2.d-1) than in SR (-0.5 x 10-3mol.m-2.d-1). The data reveal a strong seasonality in FCO2. The mean CO2 capture throughout the PS in austral spring is -5.8 x 10-3mol.m-2.d-1, reaching values lower than -50 x 10-3mol.m-2.d-1 in NR, while in winter FCO2 is close to equilibrium in SR. The analysis of the biological and thermal effects (BE and TE, respectively) on seasonal pCO2 variability indicates that regions of CO2 emission are dominated by the TE while regions of CO2 uptake are dominated by the BE. Our results indicate that the biological pump is the dominant process determining the sea-air CO2 flux in the PS.Fil: Kahl, Lucía Carolina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; ArgentinaFil: Bianchi, Alejandro A.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; ArgentinaFil: Osiroff, Ana Paula. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; ArgentinaFil: Pino, Diana Ruiz. Universite Pierre et Marie Curie; FranciaFil: Piola, Alberto Ricardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Multiple jets in the Malvinas Current

    Get PDF
    [1] The velocity structure of the Malvinas Current is described based on the analysis of high-resolution hydrographic data and direct current observations. The data show that though the current width exceeds 150 km, the flow is concentrated in two relatively narrow (~10–20 km) jets. Within these cores, the direct observations indicate surface velocities exceeding 0.5 m.s−1. Surface drifter, satellite-derived mean dynamic topography, and sea surface temperature data suggest that the high-velocity jets are also ubiquitous features of the time mean circulation. Both jets appear to be continuous features extending more than 900 km along the western slope of the Argentine Basin. These jets closely follow the 200 and 1400 m isobaths. Additional high-velocity cores are apparent in direct current measurements and hydrographic observations, but these features are weaker and not continuous along the slope. Though the Malvinas Current transport is mostly barotropic, baroclinic jets are also identified in relative geostrophic velocity sections. The baroclinic jets are colocated with the barotropic jets. Our results suggest that the main Malvinas Current core is located over a relatively flat portion of the bottom, referred to as the Perito Moreno terrace. This observation is in agreement with recent seismic and geological evidence suggesting that in geological time scales the Malvinas Current played a key role in the configuration of the bottom sediments over the western slope of the Argentine Basin.Fil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografia Naval; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y los OcĂ©anos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Franco, Barbara Cristie. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a (i); Argentina. Universidad Nacional del Sur. Departamento de FĂ­sica; ArgentinaFil: Palma, Elbio Daniel. Universidad Nacional del Sur. Departamento de FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a (i); ArgentinaFil: Saraceno, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la AtmĂłsfera y Los OcĂ©anos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la AtmĂłsfera; Argentin
    • 

    corecore