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A B S T R A C T

Sea-air CO2 fluxes (FCO2) in the Patagonian Sea (PS) were studied using observations collected in 2000–2006.
Based on the PS frontal structures and the thermal and biological contributions to FCO2 we present a regional
subdivision between distinct regimes that provide new insights on the processes that control these fluxes. The
coastal regime (CR) is a net source of atmospheric CO2 (4.9 × 10−3 mol m−2 d−1) while the open shelf regime
(SHR) is a net CO2 sink (−6.0 × 10−3 mol m−2 d−1). The interface between these two regions closely follows the
location of along-shore fronts. In addition, based on the nature of the processes that drive the FCO2, the PS is
subdivided between northern (NR) and southern (SR) regions. Both, NR and SR are CO2 sinks, but the CO2

uptake is significantly higher in NR (−6.4 × 10−3 mol m−2 d−1) than in SR (−0.5 × 10−3 mol m−2 d−1). The data
reveal a strong seasonality in FCO2. The mean CO2 capture throughout the PS in austral spring is −5.8 ×
10−3 mol m−2 d−1, reaching values lower than −50 × 10−3 mol m−2 d−1 in NR, while in winter FCO2 is close to
equilibrium in SR. The analysis of the biological and thermal effects (BE and TE, respectively) on seasonal pCO2

variability indicates that regions of CO2 emission are dominated by the TE while regions of CO2 uptake are
dominated by the BE. Our results indicate that the biological pump is the dominant process determining the
sea-air CO2 flux in the PS.

1. Introduction

Carbon dioxide (CO2) is one of the most important greenhouse
gases and plays a fundamental role in global warming and ocean
acidification. Though marginal seas represent only 7% of the global
ocean surface area (Cai, 2011; Walsh, 1988) they account for about
15% of the global ocean CO2 uptake (2.6 PgC yr−1, Le Quéré et al.,
2016). The role of marginal seas in CO2 dynamics depends on the
balance between the capture and regeneration of CO2 in surface waters,
the exchanges with the open ocean, and the diversity and abundance of
the ecosystems (Borges et al., 2005; Ito et al., 2005). Several studies
suggest that air-sea CO2 fluxes in continental shelves capture and
export atmospheric CO2 to the open sea (Chen et al., 2004;
DeGrandpre et al., 2002; Frankignoulle and Borges, 2001; Tsunogai
et al., 1999; Wang et al., 2000). However, their precise contribution to
the global ocean budget is still uncertain; with available estimates
ranging between 0.19 and 0.45 PgC yr−1 (Borges, 2011; Cai et al., 2006;
Chen and Borges, 2009; Laruelle et al., 2014; Thomas et al., 2004).

This study is focused on sea-air CO2 fluxes in the western South
Atlantic continental shelf from 38 to 55°S, hereafter referred to as the
Patagonia Sea (PS). The PS stands out as one of the most extended and
productive shelf regions worldwide (Dogliotti et al., 2014; Lutz et al.,
2010). The mean circulation in the PS is dominated by a relatively weak
mean flow towards the NNE (referred as Patagonian Current,
Brandhorst and Castello (1971)), with a mean transport between 1
and 2 Sv (Palma et al., 2008; Piola and Rivas, 1997; Ruiz Etcheverry
et al., 2016). Along the continental shelf break, the Malvinas Current
(MC) flows northward, carrying relatively cold, salty (compared with
shelf waters) and nutrient rich subantarctic waters. The MC is derived
from the northern branch of the Antarctic Circumpolar Current that
penetrates northward to about 38°S along the western margin of the
Argentine Basin.

From late spring and early fall the stratification of water column
over the PS is induced by surface warming, except for those zones
where strong winds and tidal currents (Palma et al., 2008) overcome
the effect of the surface heating (Rivas, 2010). Regions with relatively
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intense vertical circulation that favor the flow of nutrients through the
pycnocline to the illuminated layer, are highly productive (Romero
et al., 2006). From early spring to late fall tidal mixing near shore leads
to the formation of localized tidal fronts (TF), separating well-mixed
coastal waters from stratified waters (Carreto et al., 1995; Glorioso,
1987; Romero et al., 2006). A thermal front referred to as Midshelf
Front (MSF) is also observed throughout the year extending from 38 to
42°S between the 30 and 80 m isobaths (Lucas et al., 2005; Romero
et al., 2006). The MSF is associated with a local maximum of Chl-a
concentration of up to 3 mg m−3 during spring (Romero et al., 2006).
In addition, an extended termohaline front, referred to as shelf break
front (SBF), marks the transition between Malvinas and shelf waters
(Acha et al., 2004; Carreto et al., 1986, 1995; Franco et al., 2008; Rivas
and Pisoni, 2010). The SBF presents a high Chl-a concentration from
spring to autumn probably associated with the nutrient-rich waters
from the MC (Rivas et al., 2006; Romero et al., 2006).

The sea-air CO2 exchange is controlled by the so-called biological
and physical (or solubility) pumps (Volk and Hoffert, 1985).
Thermodynamic and kinematic processes govern the physical pump,
while the biological pump removes CO2 from the surface waters by
phytoplankton photosynthesis. Other processes may transfer CO2 from
the surface waters to the deeper ocean and bottom sediments. In the PS
the shelf productivity spreads to higher trophic levels reaching top
predators, including marine mammals and seabirds (Acha et al., 2004)
and benthic communities (e.g. Bogazzi et al., 2005). The intense
phytoplankton activity decreases the concentration of inorganic carbon
in the upper layer, leading to a strong capture of atmospheric CO2. As a
response to these distinct processes the spatial distribution of CO2

fluxes is heterogeneous. Both, sea surface Chl-a and sea-air difference
in CO2 partial pressure (ΔpCO2) undergo sharp changes across the tidal
fronts (Bianchi et al., 2009). These observations suggest that vertical
fluxes associated with ocean fronts promote the growth of phytoplank-
ton in the offshore side of tidal fronts and modulate the CO2 flux
through the sea surface. Thus, a link between the dynamics of pCO2,
vertical stratification and phytoplankton production is suggested.
Therefore, in this study we carry out a regional subdivision between
distinct regimes: the coastal and shelf waters (CR and SHR, respec-
tively) and discuss the different CO2 flux regimes that characterize each
region.

Horizontal distributions of sea surface temperature (SST) in the PS
indicate that there is a relatively sharp temperature transition and
amplitude of the SST annual cycle around 47°S. Several studies show
that the amplitude of the seasonal cycle of SST decreases from ~6 °C at
40°S to ~2 °C at 52°S (Podestá et al., 1991; Rivas, 2010). Summer SST
in the north is about 5 °C higher than in the south (Kahl, 2013),
probably due to the combined effect of incoming solar radiation and
air-sea heat fluxes (Podestá et al., 1991; Rivas, 2010). Therefore, the
stratification of the water column and the light penetration necessary to
promote biological activity occur earlier and end later in the north than
in the south. According to Romero et al. (2006), in the northern PS,
Chl-a blooms initiate in early austral spring (September and October),
while in the south blooms begin in late spring to early summer
(November through January). Away from the shelf break, in the north,
the most intense blooms in terms of satellite derived surface Chl-a
occur along the TF and the MSF, while in the south the high Chl-a
concentrations are located in Grande Bay (from 52 to 49°S). The
difference between amplitude of the upper layer temperature and the
onset of the phytoplankton bloom induces changes in sea-air ΔpCO2.
Thus, in this study we considered a subdivision in northern (NR) and
southern regions (SR) at 47°S.

The main objective of this work is to estimate the thermal and
biological contributions to the pCO2 and the resulting CO2 flux through
the sea surface, considering a regional subdivision that provides new
insights on the processes that control the CO2 fluxes in the PS.

2. Data and methods

2.1. Data acquisition

In this article we use air and seawater pCO2, Chl-a, fluorescence, sea
surface salinity (SSS), SST, air humidity, atmospheric pressure and, in
some cases, total CO2 (TCO2) and alkalinity (TA) obtained over the PS
during 10 cruises carried out from 2000 to 2006 (Table 1 and Fig. 1). The
cruises were carried out within the framework of the program of
cooperation France-Argentina (ARGAU, 2000–2005) and a national
project sponsored by the “Global Environmental Facility” (GEF-
Patagonia, 2005–2006), within the framework of a UNESCO program
(PNUD-AR-02/018; e.g. Charo and Piola (2014)).

In all the cruises, the SST and SSS were recorded continuously,
using Sea-Bird Electronics 21 and 37 SI sensors. The measurements of
pCO2 of seawater and air were made with an IR analyzer, except for a
small number of samples corresponding to cruise GEF1 as explained
later. The pCO2 system is a semi-continuous system of equilibrated flux
with a Siemens Ultramat 5F IR analyzer (Metzl et al., 1995). The
system is fed by a constant seawater flux that is pumped from an outlet
located in the ship's hull at a depth of 3.5 m (GEF cruises) and 9 m
(ARGAU cruises). Because the depth of the mixed layer in the PS is
larger than 20 m, except in CR and winter where water column is
homogeneous, the difference in the intake depths is not expected to
introduce a significant bias in our estimates of seawater pCO2. Each
pCO2 observation is the average of 60 measurements taken over a
period of 10 min. The standard deviation of seawater pCO2 observa-
tions was about 1 µatm, except across frontal zones, where higher
spatial variability led to increased standard deviations. The system was
calibrated every six hours with 3 gas standards of 270.0, 361.0 and
489.9 ppm to monitor and eliminate drifts in the IR analyzer. Seawater
pCO2 was corrected for warming effects using temperature data
obtained from high-accuracy sensors placed in the equilibrator and
in the seawater intake. The air pCO2 samples were collected at six hour
intervals from the bow of the ship to avoid contamination. In addition,
air pCO2 was corrected for atmospheric pressure and air humidity
effects. During the first 8 days of the GEF1 cruise the seawater pCO2

could not be measured with the IR analyzer due to a system malfunc-
tion. Therefore, during this time period pCO2 was estimated from TCO2

Table 1
Details of ARGAU transects and GEF cruises made aboard the Icebreaker Almirante
Irízar and the R/V Puerto Deseado respectively.

Cruise and Transect Dates

ARGAU-0 T0 24 − 25 March 2000
ARGAU-0 T1 27 − 30 March 2000
ARGAU-0 T3 11 – 12 May 2000
ARGAU-1 T3 24 – 27 January 2001
ARGAU-1 T4 19 – 21 February 2001
ARGAU-1 T8 5 – 8 April 2001
ARGAU-1i T1 8 – 10 August 2001
ARGAU-1i T2 12 – 15 August 2001
ARGAU-2 T1 31 January to 2 February 2002
ARGAU-2 T6 23 – 27 March 2002
ARGAU-2 T7 10 – 13 April 2002
ARGAU-2 T10 3 – 5 May 2002
ARGAU-3 T1 7 – 10 February 2003
ARGAU-3 T10 15 – 18 May 2003
ARGAU-4 T7 27 February to 1 March 2004
ARGAU-4 T8 13 – 16 March 2004
ARGAU-4 T11 14 – 18 April 2004
ARGAU-5 T1 25 – 28 December 2004
ARGAU-5 T9 9 – 12 April 2005
GEF 1 9 – 28 October 2005
GEF 2 10 March to 01 April 2006
GEF 3 7 – 25 September 2006
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and TA, using the CO2SYS program (Pierrot et al., 2006). TCO2 and TA
were determined with a potentiometric method following Gran (1952).
After 2009 a data quality control led to slight change in AT and pCO2

calculated using CO2SYS. Thus annual mean sea-air difference of pCO2

(ΔpCO2) presented in this paper differ in 1.7 ± 4 µatm from the annual
mean ΔpCO2 reported by Bianchi et al. (2009). This difference is not
significant since it is smaller than the standard error of the mean value
( ± 4 μatm).

In the ARGAU cruises, the Chl-a concentration was determined from
1.5 to 2 l of seawater samples, which were filtered using Whatman GF/F,
frozen (−20 °C) and stored in a dark environment. After thawing, the
pigments were extracted by placing the filters in 8 ml of 90% acetone. The
material extracted was read spectrophotometrically with a Beckman DU
650 spectrophotometer. Pigment concentration calculations were con-
ducted according to Strickland and Parsons (1972). In the three GEF

cruises, surface Chl-a was determined from seawater samples filtered with
glass fiber-filters similar to Whatman GF/F, and kept in liquid nitrogen
(−196 °C) on board. In these cruises Chl-a samples were also taken at all
CTD stations and every 2 h underway. The Chl-a was analyzed by the
fluorometric method of Holm-Hansen et al. (1965) modified by Lutz et al.
(2010). The pigments were extracted in 100% methanol and read with a
Perkin Elmer LS3 spectrofluorometer.

A total of 3163 hydrographic stations occupied over the continental
shelf during austral summer (December to March) between 1926 and
2010 obtained from the US NODCWorld Ocean Database 2013 (WOD13:
https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html (Boyer et al.,
2013)) and Base Regional de Datos Oceanográficos (BaRDO: http://
www.inidep.edu.ar/oceanografia/) were used to determine the Simpson
Parameter (Simpson, 1981).

Fig. 1. Tracks of the ARGAU (2000 – 2005) and GEF cruises (2005 – 2006). a) Summer (January to March), b) autumn (April and May), c) winter (August and September) and d)
spring (October).

L.C. Kahl et al. Continental Shelf Research 143 (2017) 18–28

20

https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
http://www.inidep.edu.ar/oceanografia/
http://www.inidep.edu.ar/oceanografia/


2.2. Biological and thermal effects

To determine the relative importance of the biological and thermal
effects (BE and TE, respectively) on the changes of pCO2 in sea water,
we follow the approach proposed by Takahashi et al. (2002). To remove
the temperature effect on seawater pCO2, the data were normalized to
the annual mean in-situ SST in the region of study, according to Eq.
(1). When the temperature effect is removed, the remaining variations
in pCO2 are due to BE, which includes the effects of the net biological
utilization of CO2 and other processes, including the vertical and lateral
transport and sea-air exchange of CO2 (see Discussion).

pCO atSST pCO SST SST( ) = ( )⋅exp[0.0423⋅( − )]mean obs mean obs2 2 (1)

The subscripts ‘‘mean’’ and ‘‘obs’’ indicate the annual averaged and
observed values, respectively. The temperature effect on pCO2 (∂ln
pCO2/∂SST = 0.0423 °C−1) was determined based on the analysis of
surface waters from the North Atlantic (Takahashi et al., 1993), which
is nearly independent of the temperature and chemical composition of
seawater (Rubin, 2000).

Effects of the temperature changes in the seawater pCO2 have been
computed by perturbing the mean annual pCO2 with the difference
between the mean and observed temperature. The pCO2 at an observed
temperature (SSTobs) was calculated based on Eq. (2).

pCO atSST pCO SST SST( ) = ( )⋅exp[0.0423⋅( − )]obs MeanAnnual obs mean2 2 (2)

Annual mean estimates of SST and seawater pCO2 were determined
from in-situ data. Taking into account the regional subdivision in NR
and SR, based on 10600 SST and pCO2 observations, the mean SST and
pCO2 are 11.9 °C and 340 μatm in NR and 8.1 °C and 365 μatm, in SR,
respectively.

2.3. Simpson parameter

The Simpson parameter (Φ) is a measure of the energy required to
mix the water column. Φ is defined as:

∫Φ g
h

ρ ρ z dz= ( − )⋅ ⋅ ,
h

0

0 (3)

where g is the gravitational acceleration, h is the depth of the water
column, ρ is the density of seawater, and ρ0 is the mean density of the
water column. Thus, Φ provides a simple quantitative measure of the
vertical stratification that allows a subdivision between stratified and
well-mixed shelf waters (Fig. 2), associated with the SHR and CR
respectively. A critical value of Φc = 50 J m−3 was adopted to separate
stratified (Φ > 50 J m−3) from well-mixed waters (Φ < 50 J m−3). Φc
= 50 J m−3 closely matches the mean location of the TF and MSF.
Though previous studies have estimated the Simpson parameter to
determine the degree of stratification of the PS (e.g. Bianchi et al.,
2005; Sabatini et al., 2000, 2004, 2012, among others), here Φc was
estimated using a significantly updated data set.

2.4. Calculation of the sea-air CO2 flux

The net sea-air CO2 flux (FCO2) was estimated using the relation:

FCO k k ΔpCO= ⋅ ⋅ ,w s2 2 (4)

where kw is the gas transfer velocity, ks is the coefficient of solubility of
CO2 in seawater, and ΔpCO2 is the sea-air difference of pCO2

(pCO pCO−sea atm2 2 ). ks was calculated according to the expression
proposed by Copin-Montégut (1996) and kw following Wanninkhof
(2014). To calculate the surface fluxes we used Cross-Calibrated Multi-
Platform (CCMP) winds available at 6-h intervals and 0.25° resolution
(Atlas et al., 2011) obtained from the Physical Oceanography
Distributed Active Archive Center of the Jet Propulsion Laboratory
(PO.DAAC, JPL, NASA, http://podaac.jpl.nasa.gov/DATA_CATALOG/
ccmpinfo.html).

3. Results

3.1. Biological and thermal effects on pCO2

Fig. 3 illustrates the seasonal variation of in-situ SST (crosses and
solid line) and sea water pCO2 (dots and dashed line), for NR and SR.
The seasonal variation of in-situ SST in SR is about 3 °C smaller than
the seasonal variation in NR and the SST maxima occur in January at
NR and in February at SR. Though in both, NR and SR the sea surface
pCO2 maxima occur in May, the minima are observed in October at NR
and in December at SR. Thus, seasonal pCO2 changes are not in phase
with SST, indicating that the changes in pCO2 are not dominated by
temperature changes.

Monthly means of BE and TE on pCO2 are presented in Fig. 4. In
our pCO2 data set no observations were collected in June, July and
November (see Table 1). In both NR and SR, the BE on pCO2 is low in
austral summer (i.e. January) and high in winter (i.e. August) while the
annual cycle of the TE presents an opposite pattern (high in summer
and low in winter).

The relative importance of BE and TE is represented by the
difference between their seasonal amplitudes (ΔA = ATE-ABE). The
seasonal amplitude of TE is 137 µatm at NR and 97 µatm at SR while
the amplitudes of the BE are 170 µatm at NR and 154 µatm at SR. Both
regions present negative ΔA (−33 and −57 µatm, in NR and SR,
respectively), indicating that the BE dominates the seasonal pCO2

variability. In addition, on average, in NR the BE is less significant than
in SR. This could be due to the larger SST amplitude (~9 °C vs. 6 °C) in
NR compared to SR (Fig. 3).

The surface distribution of the annual mean difference between TE
and BE (ΔA) is presented in Fig. 5. In the mid and outer PS (SHR), the
differences are mostly negative (BE > TE) showing the dominance of
BE (mean ΔA = −27.7 ± 2 µatm). However, in the inner shelf (CR),

Fig. 2. Location of SBF, TF, MSF and Malvinas Current (MC). The 200 m isobaths is
used to indicate the location of the SBF. The location of the TF and the MSF are
represented by the critical Simpson parameter Φc = 50 J m−3 and MC location is
extracted from Piola et al. (2013). Dots show the location of historical hydrographic data
used to calculate de Simpson parameter.
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positive values are observed, with a mean ΔA of 30 ± 5 µatm.
Particularly high ΔA is observed in the CR, from 38 to 41°S, west of
the MSF ( > 70 µatm).

3.2. Regional variability of pCO2 and FCO2

Seasonal and annual mean ΔpCO2 and FCO2 of the sub-regions
(CR, SHR, NR and SR) are presented in Tables 2, 3. Positive and
negative values of ΔpCO2 and FCO2 correspond to sources and sinks of
atmospheric CO2, respectively. The standard errors of ΔpCO2 and FCO2

range between 1 and 7 µatm and < 2 × 10−3 mol m−2 d−1, respectively
(Tables 2 and 3). Seasonal surface FCO2 distributions are shown in
Fig. 6. The main features of these fields are described below.

3.2.1. Coastal region
In the CR the annual mean FCO2 is 4.9 × 10−3 mol m−2 d−1 which

leads to an annual CO2 emission of 4 TgC yr−1. During summer and
autumn the CO2 emission at CR is high (mean ΔpCO2 ~ 38 µatm) and
presents a relatively homogeneous distribution (Table 2 and Fig. 6).
Moreover, the transition from CO2 emission to uptake matches the
critical Simpson parameter (Figs. 2 and 6), indicating the importance
of vertical mixing on the sign of FCO2. The surface distribution of in-
situ Chl-a in CR indicates a rich phytoplankton biomass associated
with strong spring blooms (Bianchi et al., 2009; Lutz et al., 2010).
Likewise, the mean FCO2 in spring is negative (−1.0 ×
10−3 mol m−2 d−1) due to the strong bloom widely extended over the

CR. Nevertheless, from spring to autumn the highest emission values
are observed adjacent to Valdés Peninsula. In winter the net CO2

exchanged with the atmosphere in the CR is low, with mean ΔpCO2 of 5
µatm. The maximum ΔpCO2, which reaches 122 and 130 µatm, are
observed close to the north coast of Valdés Peninsula (∼42°S–64.5°W)
in summer and in Grande Bay (∼51–53°S) in autumn, respectively.

3.2.2. Shelf region
The observed annual mean FCO2 in the SHR indicates an intense

uptake (−6.0 × 10−3 mol m−2 d−1) which is equivalent to a mean annual
carbon flux of −20 TgC yr−1 into the ocean. The mean FCO2 over the
SHR indicates CO2 capture throughout the year. From spring to
autumn, the uptake is intense, reaching −7.4 × 10−3 mol m−2 d−1 in
autumn, and is lowest in winter (−2.6 × 10−3 mol m−2 d−1). It should
be kept in mind that the TF vanishes during winter due to net the heat
flux to the atmosphere and subsequent convection which leads to
intense vertical mixing that destroys the stratification even in the mid-
shelf region (Rivas and Piola, 2002). Hence, during winter, the contrast
in stratification between CR and SHR is negligible and the FCO2

difference is significantly reduced (Table 2).

3.2.3. Northern region
The seasonal surface distributions of FCO2 show that the NR is a

sink of atmospheric CO2 throughout the year (Fig. 6, Table 3). The
FCO2 annual mean in this region (−6.4 × 10−3 mol m−2 d−1) is
equivalent to net flux of −15 TgC yr−1 into the ocean. The maximum

Fig. 3. Annual cycle of seawater pCO2 (dashed line) and SST during 2000–2006 (solid line) in the NR (left) and SR (right).

Fig. 4. Annual cycle of seawater pCO2 due to BE (grey) and TE (black) in the NR (left) and SR (right). The vertical bars indicate standard deviations around each monthly mean.
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seasonal CO2 uptake is observed in spring (Fig. 6d, Table 3), with
seasonal mean values of ΔpCO2 and FCO2 as high as −98 µatm and
−10.0 × 10−3 mol m−2 d−1, respectively. Concurrent Chl-a and ΔpCO2

observations collected in October 2005, which are representative of the
spring bloom, suggest that the biological pump is important. For
example, data collected in spring along a zonal section around 45°S
(Camarones Bay transect, see Fig. 1 for location), show that Chl-a and
ΔpCO2 are significantly anti-correlated (R2 = 0.78), with maximum
Chl-a (8 mg m−3) co-located with a minimum of ΔpCO2 (−231 µatm)

(Fig. 7a). In summer, the CO2 uptake by phytoplankton decreases,
associated with the nutrient uptake in the surface layer during the
preceding spring (Carreto et al., 1995).

3.2.4. Southern region
Seasonal distributions of surface FCO2 in the SR are presented in

Fig. 6. In autumn and winter, the sea-air FCO2 indicates emission of
CO2 to the atmosphere. Nevertheless, during autumn, the FCO2 surface
distribution shows a clear difference between two regions: the coastal
and a mid-shelf zones present positive and negative values, respec-
tively, while in winter the distribution is more homogeneous, with
lower values than observed in the other seasons (−5 to 5 ×
10−3 mol m−2 d−1). Generally, during the cold period (winter and
autumn) the surface Chl-a is low ( < 1 mg m−3), except near ∼50°S–
67°W during autumn, where Chl-a concentrations reach values of
11 mg m−3associated with a ΔpCO2 of −53 µatm. The stronger CO2

sink observed in summer (Fig. 6a, FCO2 = −5.3 × 10−3 mol m−2 d−1), is
associated with slightly higher Chl-a than observed in the NR during
that season. During spring, the ΔpCO2 in the SR is about 20% of the
ΔpCO2 observed in NR. Data collected in October 2005 along a cross-
shelf section of Chl-a and ΔpCO2 off Grande Bay reveal a maximum
CO2 uptake (ΔpCO2 = −190 µatm) associated with a strong bloom (Chl-
a = 28.6 mg m−3) (Fig. 7b). The SR annual mean sea-air CO2 flux is
−0.5 × 10−3 mol m2 d−1 which leads to an annual mean uptake of −1
TgC yr−1.

4. Discussion

Our results indicate that the pCO2 variability over most of the PS is
dominated by the BE, which includes the net biological CO2 utilization
and other processes such as advection and vertical and lateral turbulent
mixing. These processes have been analyzed using numerical models.
In the surface of the shelf break region, Lagrangian simulations of
passive particles showed intense vertical velocities. Passive particles
released in the upper layer in these high-resolution models reach the
bottom at ~ 200 m depth (Franco et al., 2017), suggesting relatively
intense downwelling. Such vertical coupling is supported by the
observation of high concentration of diatoms in gut contents of benthic
filter-feeding scallops located on the bottom along the outer shelf
(Schejter et al., 2002). These relatively intense downwelling cells may
effectively transfer carbon below the mixed layer. On the other hand,
numerical (Matano and Palma, 2008) and analytical models (Miller
et al., 2011), and observations (Valla and Piola, 2015) indicate that
relatively intense upwelling also occurs in the vicinity of the shelf
break. In the models, shelf break upwelling is controlled by the along-
shelf pressure gradient associated with the downstream divergence of a
slope current. The intensity of the upwelling is modulated by the
strength of the slope current (Matano and Palma, 2008). This
modulation is also suggested by observations of intense upper ocean
cooling along hundreds of kilometers of the outer shelf and slope
during sharp accelerations of the along-slope flow (Valla and Piola,
2015). Though area-averaged shelf break upwelling is confirmed by
realistic, high-resolution simulations (Combes and Matano, 2014), the
models also show a complex pattern of vertical circulation, with
intense, small-scale upwelling and downwelling cells. Upwelling pro-
vides a source of macronutrients and probably the dissolved iron
needed to sustain large diatom blooms during spring (Carreto et al.,
2016). Though upwelling of carbon-rich subsurface waters would
transfer carbon to the upper layer, the associated upward nutrient flux
promotes the growth of phytoplankton which enhances the biological
carbon uptake. Thus, the intense vertical circulations near the shelf
break may favor carbon uptake in the surface layer in upwelling cells
and carbon transfer to the lower layer in downwelling cells.

The increase of the surface ocean pCO2 in winter in both NR and
SR, after removing the temperature effect (Fig. 4), could be partly due
to vertical mixing after the intense stratification is destroyed by wind

Fig. 5. Difference between the effects of seasonal temperature changes and biology (TE -
BE, in µatm) on pCO2. Negative values indicate that BE dominates the pCO2 variability.
Contour of TE – EB = 0 is shown.

Table 2
Seasonal and annual mean values of ΔpCO2 (μatm), FCO2 (10−3 mol m−2 d−1), and
standard errorsa for CR, SHR and the full domain.

CR SHR Total Region

ΔpCO2 FCO2 ΔpCO2 FCO2 FCO2

Summer 39 ± 6 6.3 ± 1.1 −44 ± 2 −6.8 ± 0.6 −4.3 ± 0.6
Autumn 38 ± 4 11.0 ± 1.7 −38 ± 3 −7.4 ± 0.7 −3.2 ± 0.9
Winter 5 ± 3 3.4 ± 1.3 −9 ± 2 −2.6 ± 0.8 −1.3 ± 0.7
Spring −16 ± 7 −1.0 ± 0.6 −74 ± 4 −7.1 ± 0.4 −5.8 ± 1.0
Annual 17 ± 7 4.9 ± 1.7 −41 ± 4 −6.0 ± 0.8 −3.7 ± 1.0

a Standard error:ε Ζxσ N= /( )1/2, where Z = 3 for a significance level of 99.73, σ is the
sample standard deviation and N is the number of data used.

Table 3
Seasonal and annual mean values of ΔpCO2 (μatm), FCO2 (10−3 mol m−2 d−1) and
standard errors for NR, SR, and full domain.

NR SR Total Region

ΔpCO2 FCO2 ΔpCO2 FCO2 FCO2

Summer −24 ± 4 −3.2 ± 0.9 −34 ± 3 −5.3 ± 0.2 −4.3 ± 0.6
Autumn −32 ± 4 −8.4 ± 1.1 −1 ± 3 3.1 ± 1.4 −3.2 ± 0.9
Winter −14 ± 5 −3.8 ± 1.1 −0.2 ± 1 1.6 ± 0.7 −1.3 ± 0.7
Spring −98 ± 6 −10.0 ± 1.8 −22 ± 3 −1.3 ± 0.3 −5.8 ± 1.0
Annual −42 ± 6 −6.4 ± 2 −14 ± 3 −0.5 ± 0.4 −3.7 ± 1.0
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Fig. 6. Seasonal surface distributions of FCO2 (10
−3 mol m−2 d−1). The thick line indicates the critical Simpson parameter (Φc = 50 J m−3) separating CR and SHR. Also shown are the

47°S parallel, which marks the limit between NR and SR, and the 200 m isobath (grey). Black points indicate the tracks of the ARGAU and GEF cruises.

L.C. Kahl et al. Continental Shelf Research 143 (2017) 18–28

24



mixing and convection associated with heat loss to the atmosphere (see
Rivas and Piola, 2002). Due to the sparse observations of subsurface
carbon concentration we are unable to accurately estimate the impact
of vertical mixing. Though the surface pCO2 starts increasing in
January at NR (Fig. 3), hydrographic observations collected north of
47°S present strong vertical stratification in the mid and outer shelf
through late March (Bianchi et al., 2009; Valla and Piola, 2015),
suggesting that the increase of pCO2 is not caused by vertical mixing in
that region.

The near neutral surface CO2 balance in winter throughout the PS
(Tables 2 and 3) suggest that the carbon uptake during the other
seasons is either transferred to the sediments over the shelf (e.g.
Gómez et al., 2011) or exported to the open ocean. In-situ and
altimeter based observations (Rivas, 1997; Ruiz Etcheverry et al.,
2016) and numerical models (Palma et al., 2008) indicate that the
mean flow over the mid and outer shelf is ~0.1 m s−1 towards the NNE.
Moreover, water mass analyses (Piola et al., 2008), altimeter derived
currents (Strub et al., 2015) and realistic high-resolution models
(Matano et al., 2014) indicate that most of the shelf waters of southern
origin are exported offshore north of 38°S. Even at moderate speeds of
0.1 m s−1, it would take less than 6 months for shelf waters to be
advected 1500 km towards the NNE and exported to the deep ocean.
Thus, it is likely that at least a fraction of the carbon absorbed by the PS
in spring-summer is exported northward and flushed offshore prior to
the following winter. Consequently, the sub-thermocline waters ex-
posed to the atmosphere every winter as a result of wind mixing and
heat lost to the atmosphere do not present the high carbon concentra-
tions that would be expected based on the high uptake rates observed
in the PS during the remaining of the year.

Our results are in agreement with Takahashi et al. (2002), who also
reported high biological activity and strong CO2 uptake in the PS based
on much sparser data. In addition, satellite images of the world's
oceans indicate that the PS is one of the areas of highest Chl-a
concentration (Lutz et al., 2010). Numerical biogeochemical experi-
ments indicated that the subsurface waters from the southeast Pacific
are the most important nutrient source to the southwest Atlantic,
particularly to the southern Patagonian Shelf (Song et al., 2016). These
nutrient rich waters could support phytoplankton blooms and the high
net CO2 uptake resulting in PS.

Though the biological effect plays a dominant role on the pCO2 in
the PS, the TE dominates the seawater pCO2 variations between the
coast and the MSF (Fig. 5), where the highest CO2 emission is
observed, mainly during summer and autumn (Fig. 6a, b). The
probable cause for this high CO2 emission is the low Chl-a (between
39–41°S), which in turn is associated with weak vertical stratification,
as indicated by the critical Simpson parameter Φ < 50 J m−3 (Fig. 2),
and a nitrate deficit during these seasons (Carreto et al., 1995; Romero

et al., 2006; Marrari et al., 2013).
Our results indicate that the biological activity dominates the CO2

flux distribution in SHR. From spring to autumn, maximum CO2

uptake is observed along the shelf break front. High Chl-a is evident in
satellite images in frontal areas (Romero et al., 2006), mainly at the
shelf-break (up to 19.0 mg m−3), associated with the highest integrated
net primary production in the northern portion of the shelf-break front
(Garcia et al., 2008; Lutz et al., 2010). A distinct CO2 uptake maximum
is observed in the SHR, at Grande Bay (∼51°S) during the warm period
(from October to May), when waters are moderately stratified. These
intense southern Patagonia blooms are associated with increased
biomass of autotrophic dinoflagellates (Gómez et al., 2011). In the
southern Grande Bay, a sharp decline in phytoplankton abundance was
evident coinciding with the occurrence of well-mixed, coastal waters
(Sabatini et al., 2000, 2012).

The PS is a net sink of atmospheric CO2 like other continental
shelves such as North Sea (Thomas et al., 2004; Prowe at al, 2009),
Bering Sea (Bates et al., 2011), Chukchi Sea (Bates, 2006; Evans et al.,
2015), East China Sea (Guo et al., 2015; Kim et al., 2013;Tsunogai
et al., 1999; Wang et al., 2000), among others. Particularly, our net
annual mean FCO2 estimate over the PS (−1.35 mol m−2 yr−1) is
similar to that reported in the North Sea (−1.64 mol m−2 yr−1,
(Thomas et al., 2004)). The contrast between the CO2 outgassing from
the well-mixed regions along the coastal band and the CO2 uptake
characteristic of the stratified mid and outer shelf regions in the PS
resembles the contrast between the northern and southern North Sea.
In agreement with our results in the PS, the net CO2 uptake in the
seasonally stratified northern North Sea is high due to high net
community production in the surface water, while in the permanently
mixed southern region, dominated by a weak net CO2 source, the pCO2

cycle appears to be controlled by temperature variations (Prowe et al.,
2009). Biological processes also dominate the seasonal dynamics of
CO2 in the Bering Sea, although the CO2 uptake estimated in 2008
was157 TgC yr−1(Bates et al., 2011) is an order of magnitude larger
than in the PS. This very high CO2 sink is due to the ice retreat from
late spring to summer, which leads to high rates of net community
production particularly within the “green belt” area of the Bering Sea
shelf (Mathis et al., 2010).

Coastal bays along the eastern US, including the South Atlantic
Bight (SAB) and Middle Atlantic Bight (MAB), have some similarities
with the PS: relatively strong seasonal stratification and a shelf break
front with a western boundary current that influences the shelf
productivity. The annual mean CO2 flux estimated in this work for
the CR (4.9 × 10−3 mol m−2 d−1, Table 2) is similar to the 3.3 ×
10−3 mol m−2 d−1 estimated in the inner shelf in the SAB (Jiang et al.,
2008) but the CO2 uptake in the SHR (−6.0 × 10−3 mol m−2 d−1,
Table 2) is about twice the value estimated in the middle and outer

Fig. 7. Surface ΔpCO2 (µatm) vs Chl-a (mg m−3) for Camarones Bay (a) and Grande Bay (b) transects. R is the linear correlation coefficient and N the number of samples.
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SAB. The different CO2 uptake between SHR and SAB is possibly due to
the difference in both ecosystems that are dominated by autotrophic
and heterotrophic organisms, respectively (Schloss et al., 2007; Cai
et al., 2003). In addition, in contrast with the SAB, which is bounded by
oligotrophic Gulf Stream waters, the PS is bounded by the high-
nutrient, low-chlorophyll MC (Garcia et al., 2008; Signorini et al.,
2009). On the other hand, DeGrandpre et al. (2002) found that as a
result of seasonal cooling and heating and due to an asymmetry in the
wind speed distribution, the MAB is a net sink for atmospheric CO2. In
contrast with the PS, where the sea-air CO2 fluxes are controlled by the
BE, over the MAB and SAB the CO2 fluxes seem to be dominated by
temperature change effects (by DeGrandpre et al., 2002; Jiang et al.,
2008).

On the basis of our pCO2 observations and estimated CO2 fluxes,
the CR in the PS is a net source of CO2 to the atmosphere (4.9 ×
10−3 mol m−2 d−1) while the SHR is a net CO2 uptake region (−6.0 ×
10−3 mol m−2 d−1). In their synthesis of global pCO2 observations in
marginal seas, Chen and Borges (2009) concluded that most open
shelves in temperate and high-latitude regions are under-saturated
with respect to atmospheric CO2 throughout the year, and that near-
shore waters are CO2 sources to the atmosphere. Thus, our results are
in good qualitative agreement with Chen and Borges (2009).

5. Summary and conclusions

Based on pCO2 data collected from 2000 to 2006, we analyzed the
spatial and seasonal variability of FCO2 in the southwest South Atlantic
shelf. The interannual variability was not studied in the present work
because our data are too sparse spatially and temporarily to assess an
impact of that scale. Based on the hydrographic conditions and the
nature of the pCO2 variability the domain was subdivided in coastal
and shelf sub-regions (CR and SHR) and in north and south sub-
regions (NR and SR). Our main conclusions are:

• The annual mean difference between the thermal (TE) and biological
effects (BE) on seawater pCO2 in the PS is −43 µatm, indicating that
the biological pump is the dominant process determining the sea-air
CO2 flux in the PS.

• The TE is the dominant process in the coastal region (CR) while the
BE is the dominant process in shelf region (SHR). The CR is a source
of atmospheric CO2 with a mean annual flux of 4.9 ×
10−3 mol m−2 d−1, which leads to net CO2 flux of 4 TgC yr−1. The
highest emissions occur during summer and autumn. On the other
hand, the SHR presents a strong sink of atmospheric CO2 −6.0 ×
10−3 mol m−2 d−1, equivalent to −20 TgC yr−1, with the maximum
uptake occurring in spring.

• The Northern Region annual mean CO2 uptake is −6.4 ×
10−3 mol m−2 d−1 (−15 TgC yr−1) ranging between −10.0 ×
10−3 mol m−2 d−1 during spring and −3.2 × 10−3 mol m−2 d−1 during
summer. The CO2 uptake decreases substantially in the Southern
Region (SR), with an annual mean FCO2 of −0.5 × 10−3 mol m−2 d−1

(−1 TgC yr−1). The maximum CO2 flux in the SR, −5.3 ×
10−3 mol m−2 d−1, is observed in austral summer, while in winter
and autumn the CO2 flux is to the atmosphere. Differences in
stratification between NR and SR and a lag in the onset of the spring
bloom in SR, due to lower incident solar radiation, are the most
likely causes for the weaker ocean-atmosphere CO2 fluxes observed
in SR.

The PS presents high biological activity stimulated by intense wind
and tidal mixing, and a strong, nutrient-rich boundary current. These
processes mediate the nutrient fluxes required to sustain the intense
growth of phytoplankton. The resulting biological productivity leads to
CO2 drawdown from the atmosphere at rates comparable to some of
the largest CO2 sinks in the World Ocean. The fate of this carbon
captured from the atmosphere within the PS is largely unknown.

Key points

Distribution of sea-air CO2 fluxes are analyzed.
Biological and thermal effects on CO2 in the Patagonian Sea are

evaluated.
Biological effects dominate the CO2 variability.
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