24 research outputs found

    A multi-omics investigation of tacrolimus off-target effects on a proximal tubule cell-line

    Get PDF
    Introduction: Tacrolimus, an immunosuppressive drug prescribed to a majority of organ transplant recipients is nephrotoxic, through still unclear mechanisms. This study on a lineage of proximal tubular cells using a multi-omics approach aims to detect off-target pathways modulated by tacrolimus that can explain its nephrotoxicity. Methods: LLC-PK1 cells were exposed to 5 ”M of tacrolimus for 24 h in order to saturate its therapeutic target FKBP12 and other high-affine FKBPs and favour its binding to less affine targets. Intracellular proteins and metabolites, and extracellular metabolites were extracted and analysed by LC-MS/MS. The transcriptional expression of the dysregulated proteins PCK-1, as well as of the other gluconeogenesis-limiting enzymes FBP1 and FBP2, was measured using RT-qPCR. Cell viability with this concentration of tacrolimus was further checked until 72 h. Results: In our cell model of acute exposure to a high concentration of tacrolimus, different metabolic pathways were impacted including those of arginine (e.g., citrulline, ornithine) (p < 0.0001), amino acids (e.g., valine, isoleucine, aspartic acid) (p < 0.0001) and pyrimidine (p < 0.01). In addition, it induced oxidative stress (p < 0.01) as shown by a decrease in total cell glutathione quantity. It impacted cell energy through an increase in Krebs cycle intermediates (e.g., citrate, aconitate, fumarate) (p < 0.01) and down-regulation of PCK-1 (p < 0.05) and FPB1 (p < 0.01), which are key enzymes in gluconeogenesis and acid-base balance control. Discussion: The variations found using a multi-omics pharmacological approach clearly point towards a dysregulation of energy production and decreased gluconeogenesis, a hallmark of chronic kidney disease which may also be an important toxicity pathway of tacrolimus

    New 8-nitroquinolinone derivative displaying submicromolar in vitro activities against both Trypanosoma brucei and cruzi

    Get PDF
    International audienceAn antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≀ EC50 ≀ 13 ÎŒM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = −0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds

    Antikinetoplastid SAR study in 3-nitroimidazopyridine series: identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties

    Get PDF
    To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = -0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program

    Antikinetoplastid SAR study in 3-nitroimidazopyridine series:identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties.

    Get PDF
    International audienceTo study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = −0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program

    Identification des métabolites du Mégazol sur un modÚle animal

    No full text
    International audienceLa Trypanosomose humaine africaine (THA), ou maladie du sommeil, est une parasitose vectorielle endĂ©mique localisĂ©e en Afrique sub-saharienne. Elle est causĂ©e par un parasite, Trypanosoma brucei, transmis par la piqĂ»re d’une mouche, la glossine, lors de son repas sanguin. Le parasite aprĂšs multiplication au niveau hĂ©mo-lympathique, est capable de franchir la barriĂšre hĂ©mato-encĂ©phalique et d’atteindre le systĂšme nerveux central. A ce stade, en l’absence de traitement, la mort est inĂ©luctable. Les traitements proposĂ©s sont stades dĂ©pendants et reposent sur la pentamidine et la suramine pour le stade hĂ©mo-lymphatique, le mĂ©larsoprol, l’eflornithine et l’association nifurtimox-eflornithine pour le stade cĂ©rĂ©bral. Mais l’apparition de rĂ©sistance, la prĂ©sence d’effets indĂ©sirables graves de certains de ces traitements renforcent la nĂ©cessitĂ© de trouver de nouveaux mĂ©dicaments surs et efficaces Ă  la fois chez l’Homme et le bĂ©tail, grand rĂ©servoir de cette zoonose. Le mĂ©gazol, de formule brute 2-amino-5-(1-mĂ©thyl-5-nitro-2-imidazolyl)-1-3-4-thiadiazole, dĂ©rivĂ© nitrĂ©, possĂšde des propriĂ©tĂ©s antiparasitaires dirigĂ©es contre ce parasite depuis longtemps dĂ©montrĂ©es, mais son intĂ©rĂȘt a Ă©tĂ© malheureusement oubliĂ© depuis quelques annĂ©es, Ă  la suite de publications peu enclin Ă  montrer son potentiel thĂ©rapeutique rĂ©el.Notre travail est centrĂ© sur l’étude du mĂ©gazol, afin d’identifier les mĂ©tabolites qui pourraient prĂ©senter un intĂ©rĂȘt en mĂ©decine humaine ou vĂ©tĂ©rinaire.Les mĂ©tabolites ont Ă©tĂ© recherchĂ©s et caractĂ©risĂ©s Ă  partir d’expĂ©rimentation in vivo sur un modĂšle murin. Des lots de souris ont donc reçu une dose de mĂ©gazol Ă  des temps donnĂ©s, et un recueil des urines et de plasma a Ă©tĂ© effectuĂ© en vue d’une analyse par chromatographie liquide haute performance couplĂ©e Ă  la spectromĂ©trie de masse (CLHP/SM), dans les diffĂ©rents Ă©chantillons biologiques des divers lots de souris traitĂ©es en utilisant la mĂ©thode GUS (General Unknown Screening) permettant de dĂ©tecter et d’identifier sans a priori, les composĂ©s prĂ©sents dans les matrices biologiques et la mĂ©thode MRM (Multiple Reaction Monitoring) permettant de quantifier une ou plusieurs molĂ©cules cibles dans un Ă©chantillon complexe. Les rĂ©sultats obtenus ont permis de mettre en Ă©vidence seize ions diffĂ©rents, dont treize ont permis de confirmer la structure proposĂ©e lors d’une prĂ©cĂ©dente Ă©tude.Il reste maintenant Ă  caractĂ©riser par RMN notamment l’ensemble des mĂ©tabolites obtenus et Ă  tester in vitro sur des cultures de souches parasitaires diffĂ©rentes l’effet potentiellement trypanocide de certains mĂ©tabolites synthĂ©tisĂ©s chimiquement, mais Ă©galement de rĂ©Ă©valuer la toxicitĂ© du mĂ©gazol aux doses thĂ©rapeutiques administrables Ă  l’Homme et aux animaux en se basant sur la NOAEL (No Observable Adverse Effect Level) et la LOAEL (Lowest Observed Adverse Effect Level), et aussi de composĂ©s dĂ©rivĂ©s de ce dernier pour entrevoir un nouvel avenir thĂ©rapeutique pour les trypanosomĂ©s

    Identification of Megazol metabolites from 2 models

    No full text
    International audienceAfrican Trypanosomiasis is endemic in nearly 30 countries in sub-Saharan Africa. The parasite responsible for this infection is Trypanosoma brucei, transmitted by the bite of glossina or tsetse fly. This parasitosis affects both animals (AAT - Animal African Trypanosomosis) and humans (HAT - Human African Trypanosomosis) and is fatal in absence of treatment. Its therapeutic care is complex and depends on trypanosome species, host and stage of the disease. Therefore, it is essential to find new treatments. Megazol, a molecule previously descripted with a trypanocid effect, has interesting derivates that are investigated in our work.The aim of our work is to highlight trypanocidal metabolites derived from megazol by two approaches: 1) an in vivo study on murine model then, 2) an approach of bioconversion by microorganisms.1) Lots of mice received a dose of megazol at given times and a urine collection was carried out for analysis by high-performance liquid chromatography coupled with mass spectrometry(HPLC/MS) using GUS (General Unknown Screening) and MRM (Multiple Reaction Monitoring) methods. The results revealed 16 different ions.2) The bioconversion approach by selecting microorganisms capable of transforming megazol by a combinatorial approach, after LC/MS-MS analysis, made it possible to show the formation of metabolites identical to those in the in vivo study. This detection confirms the fact that some fungal species are capable of mimicking mammalian metabolism. The production and purification of metabolites are underway to identify and study their activity and toxicity

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF–MS) coupled to XAD fractionation: Method to algal organic matter characterization

    No full text
    International audienceThis workisfocusedonthedevelopmentofananalyticalprocedurefortheimprovementoftheOrganic Matter structurecharacterization,particularlythealgalmatter.Twofractionsofalgalorganicmatter from laboratoryculturesofalgae(Euglena gracilis) andcyanobacteria(Microcystis aeruginosa) were extractedwithXADresins.Thefractionswerestudiedusinglaserdesorptionionization(LDI)and Matrix-Assisted laserdesorptionionizationtime-of-flight massspectrometry(MALDI–TOF). Acompar- ison withthenaturalorganicmattercharacteristicsfromcommercialhumicacidsandfulvicacids extractedfromSuwanneeRiverwasperformed. Resultsshowthatalgalandnaturalorganicmattershaveuniquequasi-polymericstructures. Significant repeatingpatternswereidentified. Differentfractionsextractedfromorganicmatterwith common originhadcommonstructures.Thus,44,114and169Dapeaksseparationforfractionsfrom E. gracilis organic matterand28,58and100Dafor M. aeruginosa ones wereclearlyobserved.Using thedevelopedprotocol,astructuralschemeandorganicmattercompositionwereobtained.Therange 600–2000Dacontainedmorearchitecturalcompositiondifferencesthantherange100–600Da,suggest- ingthatorganicmatteriscomposedofanassemblyofcommonsmallmolecules.Associatedtospecific monomers,particularpatternswerecommontoallsamplesbutassemblyandresultingstructurewere uniqueforeachorganicmatter.Thus,XADfractionationcoupledtomassspectroscopyalloweddetermin- ingaspecific fingerprintforeachorganicmatter

    Identification of Metabolites Derived from the Anti-trypanosomal Drug Megazol

    No full text
    Background: African Trypanosomiasis is an endemic vector-borne parasitic disease in sub-Saharan Africa. It is caused by different parasites of the genus Trypanosoma and is transmitted through a tsetse fly (Glossina sp.) bite during a blood meal. This neglected tropical disease remains difficult to control due to the complexity of treatment protocols and use of toxic drugs. Over the decades, nitroimidazole compounds have been promising molecules for anti-parasite therapy. One of them, megazol, has proven to be an effective anti-trypanosomal drug, but interest dropped after reports were published concerning its mutagenic properties. Objectived: We therefore decided to characterize and identify megazol metabolites, with the hypothesis that they could be less toxic. Methods: We treated groups of mice with different derivatives and then detected metabolites by high performance liquid chromatography combined with mass spectrometry in urine, feces, and plasma samples from mice. Results: In vivo results showed that eleven metabolites were detected in urine (M1 to M11); six metabolites were detected in plasma (M1a/b, M2a/b, M5, M7a/b M9, andM10a/b) and in feces, only two (M1 a/b and M5) were found. Conclusions: The structures of metabolites were deduced using chromatograms and mass spectra data combined with usual metabolic patterns.

    Recherche de MĂ©tabolites du MĂ©gazol par bioconversion.

    No full text
    International audienceLa Trypanosomose Africaine est une des 18 Maladies Tropicales NĂ©gligĂ©es endĂ©mique localisĂ©e dans prĂšs de 30 pays d’Afrique sub-saharienne. Le parasite responsable de cette infection est Trypanosoma brucei, vectorisĂ© par la piqĂ»re d’une mouche, la glossine ou mouche tsĂ©-tsĂ©, lors de son repas sanguin. Cette parasitose touche aussi bien les animaux (TAA - Trypanosomose Animale Africaine) que les Hommes (THA - Trypanosomose Humaine Africaine) et est d’évolution fatale en l’absence de traitement. Les impacts Ă©conomiques et environnementaux sont encore importants pour les populations. Sa prise en charge thĂ©rapeutique est complexe et est fonction de l’espĂšce du trypanosome, de l’hĂŽte et du stade de la maladie. A toutes ces contraintes, s’ajoutent l’apparition de rĂ©sistance, et la prĂ©sence d’effets indĂ©sirables graves. Il est donc primordial de trouver de nouveaux traitements sĂ»rs et efficaces pour l’Homme mais aussi pour l’Animal afin d’assainir les potentiels rĂ©servoirs de ce parasite. C’est l’objectif que nous nous sommes fixĂ©s en reprenant les travaux d’une molĂ©cule trypanocide : le mĂ©gazol. Ce dĂ©rivĂ© nitrĂ© de formule brute 2-amino-5-(1-mĂ©thyl-5-nitro-2-imidazolyl)-1-3-4-thiadiazole, a des propriĂ©tĂ©s trypanocides reconnues mais est inutilisable chez l’Homme en raison de risques toxiques trop importants.Le but de notre travail est de mettre en Ă©vidence des mĂ©tabolites trypanocides dĂ©rivĂ©s du mĂ©gazol par une approche innovante de bioconversion par des microorganismes. Le but Ă©tant de proposer de nouvelles molĂ©cules utilisables Ă  la fois par la mĂ©decine humaine et vĂ©tĂ©rinaire.Des micro-organismes capables de transformer le mĂ©gazol ont Ă©tĂ© sĂ©lectionnĂ©s par une approche combinatoire(1). Le suivi des biotransformations a Ă©tĂ© effectuĂ© par analyse LC/MS-MS, et les rĂ©sultats obtenus ont permis de mettre en Ă©vidence la formation de mĂ©tabolites identiques Ă  ceux d’une Ă©tude prĂ©cĂ©dente, obtenus par biotransformation avec des souris traitĂ©es au mĂ©gazol. Cette dĂ©tection confirme le fait que certaines espĂšces fongiques sont capables de mimer le mĂ©tabolisme des mammifĂšres, et pourraient donc ĂȘtre un meilleur modĂšle de synthĂšse de molĂ©cules, notamment dans notre cas pour sĂ©lectionner un ou plusieursmĂ©tabolites d’intĂ©rĂȘt. La production et la purification des mĂ©tabolites sont en cours pour leur identification et l’étude de leur activitĂ© et de leur toxicitĂ©
    corecore