Antikinetoplastid SAR study in 3-nitroimidazopyridine series: identification of a novel non-genotoxic and potent anti-*T. b. brucei* hit-compound with improved pharmacokinetic properties.

Cyril Fersing^{1#}, Clotilde Boudot^{2#}, Romain Paoli-Lombardo¹, Nicolas Primas¹, Emilie Pinault³, Sébastien Hutter⁴, Caroline Castera-Ducros¹, Youssef Kabri¹, Julien Pedron⁵, Sandra Bourgeade-Delmas⁶, Alix Sournia-Saquet⁵, Jean-Luc Stigliani⁵, Alexis Valentin⁶, Amaya Azqueta⁷, Damián Muruzabal⁷, Alexandre Destere⁸, Susan Wyllie⁹, Alan H. Fairlamb⁹, Sophie Corvaisier¹⁰, Marc Since¹⁰, Aurélie Malzert-Fréon¹⁰, Carole Di Giorgio¹¹, Pascal Rathelot¹, Nadine Azas⁴, Bertrand Courtioux², Patrice Vanelle¹ and Pierre Verhaeghe^{5*}.

¹ Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France.

² Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France.

³ Université de Limoges, BISCEm, US 042 INSERM – UMS 2015 CNRS, Mass Spectrometry Platform, CBRS, 2 rue du Pr. Descottes, F-87025 Limoges, France.

⁴ Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME - Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.

⁵ LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France.

⁶ UMR 152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Toulouse, France.

⁷ Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, CP 31008, Pamplona, Navarra, Spain.

⁸ Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France, INSERM, UMR 1248, University of Limoges, France.

⁹ University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom.

¹⁰ Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.

¹¹ Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix-Marseille Université, UMR CNRS IRD Avignon Université, Campus Timone – Faculté de Pharmacie, 27 boulevard Jean-Moulin, F13385 Marseille cedex 05.

Supplementary material

Table of content

1.	Experimental spectra of selected compounds	S2
2.	Microsomal stability and plasma proteins binding assay	S20
3.	Parallel Artificial Membrane Permeability Assay (PAMPA)	S23
4.	Micronucleus assay	S23
5.	Comet assay	S24
6.	Electrochemistry	S25
7.	In vivo pharmacokinetics parameters	S26

1. Experimental spectra

<u>Figure S1</u> – ¹H NMR spectrum of **2c** in CDCl₃, on a Bruker ARX 200 spectrometer.

<u>Figure S2</u> – 13 C NMR spectrum of **2c** in CDCl₃, on a Bruker ARX 200 spectrometer.

Figure S3 – LC/MS spectrum of compound 2c.

<u>Figure S4</u> – ¹H NMR spectrum of **3c** in CDCl₃, on a Bruker ARX 200 spectrometer.

<u>Figure S5</u> – 13 C NMR spectrum of **3c** in CDCl₃, on a Bruker ARX 200 spectrometer.

Figure S6 – LC/MS spectrum of compound 3c.

Figure S7 – ¹H NMR spectrum of 8 in CDCl₃, on a Bruker Avance III nanobay 400 spectrometer.

Figure S8 – ¹³C NMR spectrum of 8 in CDCl₃, on a Bruker Avance III nanobay 400 spectrometer.

Figure S9 – LC/MS spectrum of compound 8.

Figure S10 – ¹H NMR spectrum of 9 in CDCl₃, on a Bruker Avance III nanobay 400 spectrometer.

Figure S11 – ¹³C NMR spectrum of **9** in CDCl₃, on a Bruker Avance III nanobay 400 spectrometer.

Figure S12 – LC/MS spectrum of compound 9.

Figure S13 – ¹H NMR spectrum of **10** in CDCl₃, on a Bruker Avance III nanobay 400 spectrometer.

Figure S14 – ¹³C NMR spectrum of **10** in CDCl₃, on a BRUKER Avance III nanobay 400 spectrometer.

CFT059 #344 RT: 1.27 AV: 1 NL: 1.55E6

Figure S15 – LC/MS spectrum of compound 10.

Figure S17 – ¹³C NMR spectrum of 11 in CDCl₃, on a Bruker ARX 200 spectrometer.

Figure S18 – LC/MS spectrum of compound 11.

Figure S19 – ¹H NMR spectrum of **12** in CDCl₃, on a Bruker AV 250 spectrometer.

Figure S20 – ¹³C NMR spectrum of **12** in CDCl₃, on a Bruker AV 250 spectrometer.

550 m/z

500

Figure S21 – LC/MS spectrum of compound 12.

450

636.24

600

<u>Figure S22</u> – ¹H NMR spectrum of **17** in DMSO- d_6 , on a Bruker Avance III nanobay 400.

Figure S23 – ¹³C NMR spectrum of **17** in DMSO-*d*₆, on a Bruker Avance III nanobay 400 spectrometer.

Figure S24 – LC/MS spectrum of compound 17.

<u>Figure S25</u> – ¹H NMR spectrum of **18** in CDCl₃, on a Bruker Avance III nanobay 400.

Figure S26 – ¹³C NMR spectrum of **18** in CDCl₃, on a Bruker Avance III nanobay 400 spectrometer.

CFT055 #1256 RT: 4.64 AV: 1 NL: 9.08E5 F: {0;1} + c ESI lcorona sid=35.00 det=1247.00 Full ms [50.00-800.00]

Figure S27 – LC/MS spectrum of compound 18.

2. Microsomal stability and plasma protein binding assays

Figure S28 – Microsomal stability results for compound 1c.

Figure S29 – Microsomal stability results for compound 10.

Figure S30 – Microsomal stability results for compounds 8 and 17.

Compound	Buffer chamber	Plasma chamber	Ratio plasma t = 0	Ratio plasma _{t = 4 h}	Ratio buffer _{t = 4 h}	Recovery (%)	fu			% Binding	
	Ratio	Ratio	Value	Average	Average	Value	Value	Average	Sđ	CV	Value
	0.0014	0.4504		0.45200	0.00120	107	0.00311			29.7	
Diclofenac (reference)	0.0014	0.4478	0.4234				0.00313	0.00266	0.00079		99.73
(reference)	0.0008	0.4577					0.00175				
	0.0810	2.2695	3.4575	2.23393	0.07923	69	0.03569	0.03546	0.00023	0.6	
1c	0.0806	2.2723					0.03547				96.45
	0.0761	2.1600					0.03523				
	0.2607	1.1072		1.11950	0.2586	89	0.2355	0.23100	0.00720	3.1	
8	0.2611	1.1115	1.7729				0.2349				76.90
	0.2539	1.1399					0.2227				
	0.0164	1.5964		1.54483	0.01707	104	0.01027				
17	0.0167	1.4752	1.5113				0.01132	0.01106 0.00	0.00069	6.3	98.89
	0.0181	1.56290]				0.01158				

Figure S31 – Plasma protein binding assay results of compounds 1c, 8 and 17.

3. Parallel Artificial Membrane Permeability Assay (PAMPA)

Compound	Concentration	Pe (nm/s)	logPe	Conclusion
8	100 μM	84.2 ± 2.9	1.93 ± 0.02	Diffuses moderately
Theophylline	250 μM	4.7 ± 0.6	0.67 ± 0.06	Does not diffuse
Corticosterone	100 μM	130.3 ± 7.1	2.11 ± 0.02	Diffuses

Figure S32 – Study of the passive diffusion of compound 8 through the BBB by the PAMPA assay.

4. Micronucleus assay

Tost without S0 mix			Proliferat	ion index		Micronucleated cell rates %				
Test withou	BI	MONO	CBPI	CI%	MNC1	MNC2	MNC-M	Р		
Control		436	64	1.86	-	8	11	9.5 <u>+</u> 2.1	-	
Solvent control		428	72	1.85	1.1	9	10	9.5 <u>+</u> 0.7	-	
Mitomycin C control		432	68	1.86	0	28	34	31 <u>+</u> 4.2	<0.001	
	0.01 mM	424	76	1.85	1.1	10	12	11 <u>+</u> 1.4	>0.05 NS	
Compound 8	0.05 mM	419	81	1.84	2.3	9	11	10 <u>+</u> 1.4	>0.05 NS	
	0.1 mM	398	102	1.80	6.9	8	12	10 <u>+</u> 2.8	>0.05 NS	
	0.5 mM	392	108	1.78	9.3	8	10	9 <u>+</u> 1.4	>0.05 NS	

Test with S9 mix			Proliferat	ion index		Micronucleated cell rates %				
		BI	MONO	CBPI	CI%	MNC1	MNC2	MNC-M	Р	
Control		433	67	1.86	-	9	12	10.5 <u>+</u> 2.1	-	
Solvent control		429	71	1.86	0	9	11	10 <u>+</u> 1.4	-	
Benzo[<i>a</i>]pyrene control		423	77	1.85	1.1	27	23	25 <u>+</u> 2.8	<0.001	
	0.01 mM	431	69	1.86	0	9	13	11 <u>+</u> 2.8	>0.05 NS	
Compound 8	0.05 mM	411	89	1.82	4.6	10	12	11 <u>+</u> 1.4	>0.05 NS	
	0.1 mM	408	92	1.81	6.9	10	11	10.5 <u>+</u> 0.7	>0.05 NS	
	0.5 mM	404	96	1.81	6.9	9	12	10.5 <u>+</u> 2.1	>0.05 NS	

BI : Binucleated cells MONO : Mononucleated cells CBPI : Cytokinesis-Blocked Proliferative Index CI% : Cytostasis index expressed in percentage as compared to the control MNC1, MNC2: Micronucleated cell rates

MNC-M : Means of the micronucleated cell rates P : probability of the chi-squared test (p < 0.05: significant difference as compared to the control culture) NS : non-significant difference as compared to the control culture

<u>Figure S33</u> – Micronucleus assay results for compound **8**, without metabolic activation and with S9mix.

5. Comet assay

<u>Figure S34</u> - % DNA in tail obtained in HepG2 cells treated with compound **8** at 0, 5, 10 or 20 μ M for 2, 24 or 72 h. Cell treated with 1mM MMS for 2 h was used as positive control. Mean and SD of 3 independent experiments are shown.

6. Electrochemistry

<u>Figure S35</u> – Cyclic voltammetry of the compound **2c** (10^{-3} mol L⁻¹) in DMSO + 0.1 mol L⁻¹ of (*n*-Bu₄N)[PF₆] on GC microdisk (r = 0.5mm) at room temperature. Scan rate: 0.2 V s⁻¹.

<u>Figure S36</u> – Cyclic voltammetry of the compound **3c** (10^{-3} mol L⁻¹) in DMSO + 0.1 mol L⁻¹ of (*n*-Bu₄N)[PF₆] on GC microdisk (r = 0.5mm) at room temperature. Scan rate: 0.2 V s⁻¹.

<u>Figure S37</u> – Cyclic voltammetry of the compound **8** (10^{-3} mol L⁻¹) in DMSO + 0.1 mol L⁻¹ of (*n*-Bu₄N)[PF₆] on GC microdisk (r = 0.5mm) at room temperature. Scan rate: 0.2 V s⁻¹.

7. In vivo pharmacokinetics parameters

		Precursor ion		Product ion						
Cmnde	Retention time (min)		01 pm		Quantitatio	n	Confirmation			
Cilipus		m/z	bias (V)	m/z	Collision	Q3 pre-		Collision	Q3 pre-	
					energy (V)	bias (V)	111/2	energy (V)	bias (V)	
8	2.38	367.8	-21	243.05	-24	-16	189.8	-43	-11	
							321.9	-15	-25	
Ornidazole (IS)	2.0	220	-30	82	-30	-14	128.1	-15	-27	

Figure S38. LC retention time (RT) and selected MS/MS detection conditions.

		LLOQ	LQC	MQC	HQC	$1.5 \times ULOQ$
		5 ng/mL	10 ng/mL	75 ng/mL	625 ng/mL	1500 ng/mL
Coefficient of determ	ination (r ²)					
Recovery (%CV) $(n = 1)$	= 3)	91.3% (13.7%)	86.8% (12.4%)	97.1% (2.6%)	92.1% (6.6%)	
Intra-assay $(n = 5)$						
	Mean ± SD (ng/ml)	4.89 ± 0.66	9.46 ± 1.24	73.60 ± 1.98	598.51 ± 42.99	
	Accuracy	97.7%	94.6%	98.1%	95.8%	
	CV%	13.4%	13.1%	2.7%	7.2%	
Inter-assay $(n = 5)$						
	Mean ± SD (ng/ml)	4.87 ± 0.29	10.74 ± 0.48	75.02 ± 6.36	649.0 ± 45.06	
	Accuracy	97.7%	107.4%	100.0%	103.8%	
	CV%	6.0%	4.4%	8.5%	6.9%	
Dilution test $(n = 3)$						
1.25-fold dilution	Mean ± SD (ng/ml)			76.88 ± 7.45	597.13 ± 31.0	
	Accuracy (%CV)			102.5% (9.7%)	95.5% (5.2%)	
2-fold dilution	Mean ± SD (ng/ml)			72.70 ± 6.67	589.01 ± 11.63	1499.6 ± 185.2
	Accuracy (%CV)			96.9% (9.2%)	98.0% (5.5%)	100.0% (12.3%)
4-fold dilution	Mean ± SD (ng/ml)			71.09 ± 4.12	467.72 ± 78.48	
	Accuracy (%CV)			94.8% (5.8%)	74.8% (16.8%)	

SD: standard deviation ; CV: coefficient of variation

Figure S39. Main parameters of the validation protocol for whole blood dosing of compound 8.