686 research outputs found
HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells
The Barents area changes – How will Finland adapt? (Barentsin alue muuttuu – miten Suomi sopeutuu?)
The cumulative impacts of environmental, climatic and societal changes and their consequences will affect the development of the Arctic region in the coming decades. Adaptation to these changes will require measures of all the actors in the region. Finland, part of the Euro-Arctic region, will adapt to these changes in a variety of ways. The Barents area is unique in the Arctic in being a multicultural, relatively densely populated area with well-developed industries and infrastructure.
This report examines adaptation to changes and their consequences in the Barents area in terms of governance and Finland’s capacities to adapt. The aim has been to produce comprehensive information from the Finnish perspective for local and national decision-makers about long-term changes in the region, their expected impacts and adaptation options, and to support decision-making that will advance adaptation. The report includes recommendations.
This report is based on the contribution of Finnish experts to an Arctic Council and Arctic Monitoring and Assessment Programme (AMAP) project titled ”Adaptation Actions for a Changing Arctic” (AACA). The project has prepared a pilot report by Nordic and Russian experts on the Barents area in English on changes, their impacts and adaptation options. The report will be published in 2017 (AMAP 2017)
Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.
Abstract
OBJECTIVE:
We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination.
METHODS:
We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients.
RESULTS:
The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077).
CONCLUSION:
Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation
Computer-guided total synthesis of natural products: recent examples and future perspectives
FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOQuantum chemical calculations of nuclear magnetic resonance (NMR) shifts and coupling constants have been extensively employed in recent years mainly to facilitate structural elucidation of organic molecules. When the results of such calculations are used29510411075FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2013/07607-82014/25474-82016/12541-4The authors are grateful to FAPESP (grants 2013/07607-8, 2014/25474-8 and 2016/12541-4) and CONICET, ANPCyT and UNR for financial suppor
Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes
Atomic layer deposition (ALD) was utilized to deposit uniform thin films of hematite (α-Fe2O3) on transparent conductive substrates for photocatalytic water oxidation studies. Comparison of the oxidation of water to the oxidation of a fast redox shuttle allowed for new insight in determining the rate limiting processes of water oxidation at hematite electrodes. It was found that an additional overpotential is needed to initiate water oxidation compared to the fast redox shuttle. A combination of electrochemical impedance spectroscopy, photoelectrochemical and electrochemical measurements were employed to determine the cause of the additional overpotential. It was found that photogenerated holes initially oxidize the electrode surface under water oxidation conditions, which is attributed to the first step in water oxidation. A critical number of these surface intermediates need to be generated in order for the subsequent hole-transfer steps to proceed. At higher applied potentials, the behavior of the electrode is virtually identical while oxidizing either water or the fast redox shuttle; the slight discrepancy is attributed to a shift in potential associated with Fermi level pinning by the surface states in the absence of a redox shuttle. A water oxidation mechanism is proposed to interpret these results
CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer
CRIPTO (CR-1, TDGF1) is a cell surface/secreted oncoprotein actively involved in development and cancer. Here, we report that high expression of CRIPTO correlates with poor survival in stratified risk groups of prostate cancer (PCa) patients. CRIPTO and its signaling partner glucose-regulated protein 78 (GRP78) are highly expressed in PCa metastases and display higher levels in the metastatic ALDHhigh sub-population of PC-3M-Pro4Luc2 PCa cells compared with non-metastatic ALDHlow. Coculture of the osteotropic PC-3M-Pro4Luc2 PCa cells with differentiated primary human osteoblasts induced CRIPTO and GRP78 expression in cancer cells and increases the size of the ALDHhigh sub-population. Additionally, CRIPTO or GRP78 knockdown decreases proliferation, migration, clonogenicity and the size of the metastasis-initiating ALDHhigh sub-population. CRIPTO knockdown reduces the invasion of PC-3M-Pro4Luc2 cells in zebrafish and inhibits bone metastasis in a preclinical mouse model. These results highlight a functional role for CRIPTO and GRP78 in PCa metastasis and suggest that targeting CRIPTO/GRP78 signaling may have significant therapeutic potential.Oncogene advance online publication, 10 April 2017; doi:10.1038/onc.2017.87
(-)-tarchonanthuslactone exerts a blood glucose-increasing effect in experimental type 2 diabetes mellitus
A number of studies have proposed an anti-diabetic effect for tarchonanthuslactone based on its structural similarity with caffeic acid, a compound known for its blood glucose-reducing properties. However, the actual effect of tarchonanthuslactone on blood glucose level has never been tested. Here, we report that, in opposition to the common sense, tarchonanthuslactone has a glucose-increasing effect in a mouse model of obesity and type 2 diabetes mellitus. The effect is acute and non-cumulative and is present only in diabetic mice. In lean, glucose-tolerant mice, despite a slight increase in blood glucose levels, the effect was not significant.A number of studies have proposed an anti-diabetic effect for tarchonanthuslactone based on its structural similarity with caffeic acid, a compound known for its blood glucose-reducing properties. However, the actual effect of tarchonanthuslactone on blood glucose level has never been tested. Here, we report that, in opposition to the common sense, tarchonanthuslactone has a glucose-increasing effect in a mouse model of obesity and type 2 diabetes mellitus. The effect is acute and non-cumulative and is present only in diabetic mice. In lean, glucose-tolerant mice, despite a slight increase in blood glucose levels, the effect was not significant2035038504
TBK1 Kinase Addiction in Lung Cancer Cells Is Mediated via Autophagy of Tax1bp1/Ndp52 and Non-Canonical NF-kappa B Signalling
K-Ras dependent non-small cell lung cancer (NSCLC) cells are 'addicted' to basal autophagy that reprograms cellular metabolism in a lysosomal-sensitive manner. Here we demonstrate that the xenophagy-associated kinase TBK1 drives basal autophagy, consistent with its known requirement in K-Ras-dependent NSCLC proliferation. Furthermore, basal autophagy in this context is characterised by sequestration of the xenophagy cargo receptor Ndp52 and its paralogue Tax1bp1, which we demonstrate here to be a bona fide cargo receptor. Autophagy of these cargo receptors promotes non-canonical NF-κB signalling. We propose that this TBK1-dependent mechanism for NF-κB signalling contributes to autophagy addiction in K-Ras driven NSCLC
TBK1: a new player in ALS linking autophagy and neuroinflammation.
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS
- …
