414 research outputs found

    A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12289-015-1225-zThis paper addresses the numerical simulation of void formation and transport during mold filling in Resin Transfer Molding (RTM). The saturation equation, based on a two-phase flow model resin/air, is coupled with Darcy s law and mass conservation to simulate the unsaturated filling flow that takes place in a RTM mold when resin is injected through the fiber bed. These equations lead to a system composed of an advection diffusion equation for saturation including capillary effects and an elliptic equation for pressure taking into account the effect of air residual saturation. The model introduces the relative permeability as a function of resin saturation. When capillary effects are omitted, the hyperbolic nature of the saturation equation and its strong coupling with Darcy equation through relative permeability represent a challenging numerical issue. The combination of the constitutive physical laws relating permeability to saturation with the coupled system of the pressure and saturation equations allows predicting the saturation profiles. The model was validated by comparison with experimental data obtained for a fiberglass reinforcement injected in a RTM mold at constant flow rate. The saturation measured as a function of time during the resin impregnation of the fiber bed compared very well with numerical predictions.The authors acknowledge financial support of the Spanish Government (Projects DPI2010-20333 and DPI2013-44903-R-AR), of the National Science and Research Council of Canada (NSERC) and of the Canada Reseach Chair (CRC) program.Gascón Martínez, ML.; García Manrique, JA.; Lebel, F.; Ruiz, E.; Trochu, F. (2016). A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding. International Journal of Material Forming. 9(2):229-239. doi:10.1007/s12289-015-1225-zS22923992Patel N, Lee LJ (1996) Modeling of void formation and removal in liquid composite molding. Part I: wettability analysis. Polym Compos 17(1):96–103Ruiz E, Achim V, Soukane S, Trochu F, Bréard J (2006) Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos Sci Technol 66(3–4):475–486Trochu F, Ruiz E, Achim V, Soukane S (2006) Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos A: Appl Sci Manuf 37(6):890–902Park CH, Lee W (2011) Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review. J Reinf Plast Compos 30(11):957–977Pillai KM (2004) Modeling the unsaturated flow in liquid composite molding processes: a review and some thoughts. J Compos Mater 38(23):2097–2118Breard J, Saouab A, Bouquet G (2003) Numerical simulation of void formation in LCM. Compos A: Appl Sci Manuf 34:517–523Breard J, Henzel Y, Trochu F, Gauvin R (2003) Analysis of dynamic flows through porous media. Part I: comparison between saturated and unsaturated flows in fibrous reinforcements. Polym Compos 24(3):391–408Parnas RS, Phelan FR Jr (1991) The effect of heterogeneous porous media on mold filling in Resin Transfer Molding. SAMPE Q 22(2):53–60Parseval DY, Pillai KM, Advani SG (1997) A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transp Porous Media 27(3):243–264Pillai KM (2002) Governing equations for unsaturated flow through woven fiber mats. Part 1. Isothermal flows. Compos A: Appl Sci Manuf 33(7):1007–1019Simacek P, Advani SG (2003) A numerical model to predict fiber tow saturation during Liquid Composite Molding. Compos Sci Technol 63:1725–1736García JA, Gascón L, Chinesta F (2010) A flux limiter strategy for solving the saturation equation in RTM process simulation. Compos A: Appl Sci Manuf 41:78–82Chui WK, Glimm J, Tangerman FM, Jardine AP, Madsen JS, Donnellan TM, Leek R (1997) Process modeling in Resin Transfer Molding as a method to enhance product quality. SIAM Rev 39(4):714–727Nordlund M, Michaud V (2012) Dynamic saturation curve measurement for resin flow in glass fibre reinforcement. Compos A: Appl Sci Manuf 43:333–343García JA, Ll G, Chinesta F (2003) A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique. Comput Methods Appl Mech Eng 192(7–8):877–893García JA, Ll G, Chinesta F, Trochu F, Ruiz E (2010) An efficient solver of the saturation equation in liquid composite molding processes. Int J Mater Form 3(2):1295–1302Lebel F (2012) Contrôle de la fabrication des composites par injection sur renforts. École Polytechnique de Montréal, CanadaVan Genuchten MT (1980) Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898Buckley SE, Leverett MC (1942) Mechanism of fluid displacement in sands. Pet Trans AWME 146:107–116Lundstrom TS, Gebart BR (1994) Influence from process parameters on void formation in Resin Transfer Molding. Polym Compos 15(1):25–33Lundstrom TS (1997) Measurement of void collapse during Resin Transfer Molding. Compos A: Appl Sci Manuf 28(3):201–214Lundstrom TS, Frishfelds V, Jakovics A (2010) Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry. Compos A: Appl Sci Manuf 41:83–92Lebel F, Fanaei A, Ruiz E, Trochu F (2012) Experimental characterization by fluorescence of capillary flows in the fiber tows of engineering fabrics. Open J Inorg Non-Metallic Mater 2(3):25–45Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University. Hydrology Papers 1–37Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Monthly 19(1):38–4

    High-mass star-forming cloud G0.38+0.04 in the Galactic Center Dust Ridge contains H2CO and SiO masers

    Get PDF
    We have discovered a new H2_2CO (formaldehyde) 11,0−11,11_{1,0}-1_{1,1} 4.82966 GHz maser in Galactic Center Cloud C, G0.38+0.04. At the time of submission, this is the eighth region containing an H2_2CO maser detected in the Galaxy. Cloud C is one of only two sites of confirmed high-mass star formation along the Galactic Center Ridge, affirming that H2_2CO masers are exclusively associated with high-mass star formation. This discovery led us to search for other masers, among which we found new SiO vibrationally excited masers, making this the fourth star-forming region in the Galaxy to exhibit SiO maser emission. Cloud C is also a known source of CH3_3OH Class-II and OH maser emission. There are now two known SiO and H2_2CO maser containing regions in the CMZ, compared to two and six respectively in the Galactic disk, while there is a relative dearth of H2_2O and CH3_3OH Class-II masers in the CMZ. SiO and H2_2CO masers may be preferentially excited in the CMZ, perhaps due to higher gas-phase abundances from grain destruction and heating, or alternatively H2_2O and CH3_3OH maser formation may be suppressed in the CMZ. In any case, Cloud C is a new testing ground for understanding maser excitation conditions

    Dense gas in the Galactic central molecular zone is warm and heated by turbulence

    Get PDF
    The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H2_2CO) transitions. We used the 32,1−22,0/30,3−20,23_{2,1} - 2_{2,0} / 3_{0,3} - 2_{0,2} line ratio to determine the gas temperature in n∼104−105n \sim 10^4 - 10^5 cm−3^{-3} gas. We have produced temperature maps and cubes with 30" and 1 km/s resolution and published all data in FITS form. Dense gas temperatures in the Galactic center range from ~60 K to > 100 K in selected regions. The highest gas temperatures T_G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km/s and 50 km/s clouds, and in "The Brick" (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ζCR<10−14{\zeta}_{CR} < 10^{-14} 1/s. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner ~75 pc are confirmed to be high in the entire CMZ

    ATLASGAL - Molecular fingerprints of a sample of massive star-forming clumps

    Get PDF
    We have conducted a 3-mm molecular-line survey towards 570 high-mass star-forming clumps, using the Mopra telescope. The sample is selected from the 10 000 clumps identified by the ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey and includes all of the most important embedded evolutionary stages associated with massive star formation, classified into five distinct categories (quiescent, protostellar, young stellar objects, H ii regions, and photon-dominated regions). The observations were performed in broad-band mode with frequency coverage of 85.2-93.4 GHz and a velocity resolution of 1/40.9 km s '1, detecting emission from 26 different transitions. We find significant evolutionary trends in the detection rates, integrated line intensities, and abundances of many of the transitions and also identify a couple of molecules that appear to be invariant to changes in the dust temperature and evolutionary stage [N 2 H + (1-0) and HN 13 C (1-0)]. We use the K-ladders for CH 3 C 2 H (5-4) and CH 3 CH (5-4) to calculate the rotation temperatures and find around one-third of the quiescent clumps have rotation temperatures that suggest the presence of an internal heating source. These sources may constitute a population of very young protostellar objects that are still dark at 70 mum and suggest that the fraction of truly quiescent clumps may only be a few per cent. We also identify a number of line ratios that show a strong correlation with the evolutionary stage of the embedded objects and discuss their utility as diagnostic probes of evolution

    The fission yeast Rpb4 subunit of RNA polymerase II plays a specialized role in cell separation

    Get PDF
    RNA polymerase II is a complex of 12 subunits, Rpb1 to Rpb12, whose specific roles are only partly understood. Rpb4 is essential in mammals and fission yeast, but not in budding yeast. To learn more about the roles of Rpb4, we expressed the rpb4 gene under the control of regulatable promoters of different strength in fission yeast. We demonstrate that below a critical level of transcription, Rpb4 affects cellular growth proportional to its expression levels: cells expressing lower levels of rpb4 grew slower compared to cells expressing higher levels. Lowered rpb4 expression did not affect cell survival under several stress conditions, but it caused specific defects in cell separation similar to sep mutants. Microarray analysis revealed that lowered rpb4 expression causes a global reduction in gene expression, but the transcript levels of a distinct subset of genes were particularly responsive to changes in rpb4 expression. These genes show some overlap with those regulated by the Sep1-Ace2 transcriptional cascade required for cell separation. Most notably, the gene expression signature of cells with lowered rpb4 expression was highly similar to those of mcs6, pmh1, sep10 and sep15 mutants. Mcs6 and Pmh1 encode orthologs of metazoan TFIIH-associated cyclin-dependent kinase (CDK)-activating kinase (Cdk7-cyclin H-Mat1), while Sep10 and Sep15 encode mediator components. Our results suggest that Rpb4, along with some other general transcription factors, plays a specialized role in a transcriptional pathway that controls the cell cycle-regulated transcription of a specific subset of genes involved in cell division. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00438-006-0161-5 and is accessible for authorized users

    Aerobic Exercise during Pregnancy and Presence of Fetal-Maternal Heart Rate Synchronization

    Get PDF
    It has been shown that short-term direct interaction between maternal and fetal heart rates may take place and that this interaction is affected by the rate of maternal respiration. The aim of this study was to determine the effect of maternal aerobic exercise during pregnancy on the occurrence of fetal-maternal heart rate synchronization.In 40 pregnant women at the 36th week of gestation, 21 of whom exercised regularly, we acquired 18 min. RR interval time series obtained simultaneously in the mothers and their fetuses from magnetocardiographic recordings. The time series of the two groups were examined with respect to their heart rate variability, the maternal respiratory rate and the presence of synchronization epochs as determined on the basis of synchrograms. Surrogate data were used to assess whether the occurrence of synchronization was due to chance.In the original data, we found synchronization occurred less often in pregnancies in which the mothers had exercised regularly. These subjects also displayed higher combined fetal-maternal heart rate variability and lower maternal respiratory rates. Analysis of the surrogate data showed shorter epochs of synchronization and a lack of the phase coordination found between maternal and fetal beat timing in the original data.The results suggest that fetal-maternal heart rate coupling is present but generally weak. Maternal exercise has a damping effect on its occurrence, most likely due to an increase in beat-to-beat differences, higher vagal tone and slower breathing rates

    ATLASGAL - evolutionary trends in high-mass star formation

    Get PDF
    ATLASGAL is an 870-μm dust survey of 420 deg2 the inner Galactic plane and has been used to identify ∼10 000 dense molecular clumps. Dedicated follow-up observations and complementary surveys are used to characterize the physical properties of these clumps, map their Galactic distribution, and investigate the evolutionary sequence for high-mass star formation. The analysis of the ATLASGAL data is ongoing: We present an up-to-date version of the catalogue. We have classified 5007 clumps into four evolutionary stages (quiescent, protostellar, young stellar objects and H ii regions) and find similar numbers of clumps in each stage, suggesting a similar lifetime. The luminosity-to-mass (Lbol/Mfwhm) ratio curve shows a smooth distribution with no significant kinks or discontinuities when compared to the mean values for evolutionary stages indicating that the star formation process is continuous and that the observational stages do not represent fundamentally different stages or changes in the physical mechanisms involved. We compare the evolutionary sample with other star formation tracers (methanol and water masers, extended green objects and molecular outflows) and find that the association rates with these increases as a function of evolutionary stage, confirming that our classification is reliable. This also reveals a high association rate between quiescent sources and molecular outflows, revealing that outflows are the earliest indication that star formation has begun and that star formation is already ongoing in many of the clumps that are dark even at 70 μm

    Mathematical modeling of microRNA-mediated mechanisms of translation repression

    Full text link
    MicroRNAs can affect the protein translation using nine mechanistically different mechanisms, including repression of initiation and degradation of the transcript. There is a hot debate in the current literature about which mechanism and in which situations has a dominant role in living cells. The worst, same experimental systems dealing with the same pairs of mRNA and miRNA can provide ambiguous evidences about which is the actual mechanism of translation repression observed in the experiment. We start with reviewing the current knowledge of various mechanisms of miRNA action and suggest that mathematical modeling can help resolving some of the controversial interpretations. We describe three simple mathematical models of miRNA translation that can be used as tools in interpreting the experimental data on the dynamics of protein synthesis. The most complex model developed by us includes all known mechanisms of miRNA action. It allowed us to study possible dynamical patterns corresponding to different miRNA-mediated mechanisms of translation repression and to suggest concrete recipes on determining the dominant mechanism of miRNA action in the form of kinetic signatures. Using computational experiments and systematizing existing evidences from the literature, we justify a hypothesis about co-existence of distinct miRNA-mediated mechanisms of translation repression. The actually observed mechanism will be that acting on or changing the limiting "place" of the translation process. The limiting place can vary from one experimental setting to another. This model explains the majority of existing controversies reported.Comment: 40 pages, 9 figures, 4 tables, 91 cited reference. The analysis of kinetic signatures is updated according to the new model of coupled transcription, translation and degradation, and of miRNA-based regulation of this process published recently (arXiv:1204.5941). arXiv admin note: text overlap with arXiv:0911.179

    Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MMP-13 and IGFBP-5 are important factors involved in osteoarthritis (OA). We investigated whether two highly predicted microRNAs (miRNAs), miR-140 and miR-27a, regulate these two genes in human OA chondrocytes.</p> <p>Methods</p> <p>Gene expression was determined by real-time PCR. The effect of each miRNA on IGFBP-5 and MMP-13 expression/production was evaluated by transiently transfecting their precursors (pre-miRNAs) and inhibitors (anti-miRNAs) into human OA chondrocytes. Modulation of IGFBP-5, miR-140 and miR-27a expression was determined upon treatment of OA chondrocytes with cytokines and growth factors.</p> <p>Results</p> <p>IGFBP-5 was expressed in human chondrocytes with its level significantly lower (p < 0.04) in OA. Five computational algorithms identified miR-140 and miR-27a as possible regulators of MMP-13 and IGFBP-5 expression. Data showed that both miRNAs were expressed in chondrocytes. There was a significant reduction (77%, p < 0.01) in miR-140 expression in OA compared to the normal chondrocytes, whereas miR-27a expression was only slightly decreased (23%). Transfection with pre-miR-140 significantly decreased (p = 0.0002) and with anti-miR-140 significantly increased (p = 0.05) IGFBP-5 expression at 24 hours, while pre-miR-27a did not affect either MMP-13 or IGFBP-5. Treatment with anti-miR-27a, but not with anti-miR-140, significantly increased the expression of both MMP-13 (p < 0.05) and IGFBP-5 (p < 0.01) after 72 hours of incubation. MMP-13 and IGFBP-5 protein production followed the same pattern as their expression profile. These data suggest that IGFBP-5 is a direct target of miR-140, whereas miR-27a down-regulates, likely indirectly, both MMP-13 and IGFBP-5.</p> <p>Conclusion</p> <p>This study is the first to show the regulation of these miRNAs in human OA chondrocytes. Their effect on two genes involved in OA pathophysiology adds another level of complexity to gene regulation, which could open up novel avenues in OA therapeutic strategies.</p
    • …
    corecore