49 research outputs found

    An off-shell I.R. regularization strategy in the analysis of collinear divergences

    Full text link
    We present a method for the analysis of singularities of Feynman amplitudes based on the Speer sector decomposition of the Schwinger parametric integrals combined with the Mellin-Barnes transform. The sector decomposition method is described in some details. We suggest the idea of applying the method to the analysis of collinear singularities in inclusive QCD cross sections in the mass-less limit regularizing the forward amplitudes by an off-shell choice of the initial particle momenta. It is shown how the suggested strategy works in the well known case of the one loop corrections to Deep Inelastic Scattering.Comment: 25 pages, 3 figure

    Transient evolution of C-type shocks in dusty regions of varying density

    Full text link
    Outflows of young stars drive shocks into dusty, molecular regions. Most models of such shocks assume that they are steady and propagating perpendicular to the magnetic field. Real shocks often violate both of these assumptions and the media through which they propagate are inhomogeneous. We use the code employed previously to produce the first time-dependent simulations of fast-mode, oblique C-type shocks interacting with density perturbations. We include a self-consistent calculation of the thermal and ionisation balances and a fluid treatment of grains. We identify features that develop when a multifluid shock encounters a density inhomogeneity to investigate whether any part of the precursor region ever behaves in a quasi-steady fashion. If it does the shock may be modelled approximately without solving the time-dependent hydromagnetic equations. Simulations were made for initially steady oblique C-type shocks encountering density inhomogeneities. For a semi-finite inhomogeneity with a density larger than the surrounding medium, a transmitted shock evolves from being J-type to a steady C-type shock on a timescale comparable to the ion-flow time through it. A sufficiently upstream part of the precursor of an evolving J-type shock is quasi-steady. The ion-flow timescale is also relevant for the evolution of a shock moving into a region of decreasing density. The models for shocks propagating into regions in which the density increases and then decreases to its initial value cannot be entirely described in terms of the results obtained for monotonically increasing and decreasing densities. For the latter model, the long-term evolution to a C-type shock cannot be approximated by quasi-steady models.Comment: 11 pages, 9 figure

    Evolution of dust and ice features around FU Orionis objects

    Get PDF
    (abridged) We present spectroscopy data for a sample of 14 FUors and 2 TTauri stars observed with the Spitzer Space Telescope or with the Infrared Space Observatory (ISO). Based on the appearance of the 10 micron silicate feature we define 2 categories of FUors. Objects showing the silicate feature in absorption (Category 1) are still embedded in a dusty and icy envelope. The shape of the 10 micron silicate absorption bands is compared to typical dust compositions of the interstellar medium and found to be in general agreement. Only one object (RNO 1B) appears to be too rich in amorphous pyroxene dust, but a superposed emission feature can explain the observed shape. We derive optical depths and extinction values from the silicate band and additional ice bands at 6.0, 6.8 and 15.2 micron. In particular the analysis of the CO_2 ice band at 15.2 micron allows us to search for evidence for ice processing and constrains whether the absorbing material is physically linked to the central object or in the foreground. For objects showing the silicate feature in emission (Category 2), we argue that the emission comes from the surface layer of accretion disks. Analyzing the dust composition reveals that significant grain growth has already taken place within the accretion disks, but no clear indications for crystallization are present. We discuss how these observational results can be explained in the picture of a young, and highly active accretion disk. Finally, a framework is proposed as to how the two categories of FUors can be understood in a general paradigm of the evolution of young, low-mass stars. Only one object (Parsamian 21) shows PAH emission features. Their shapes, however, are often seen toward evolved stars and we question the object's status as a FUor and discuss other possible classifications.Comment: accepted for publication in ApJ; 63 pages preprint style including 8 tables and 24 figure

    Time-dependent simulations of steady C-type shocks

    Full text link
    Using a time-dependent multifluid, magnetohydrodynamic code, we calculated the structure of steady perpendicular and oblique C-type shocks in dusty plasmas. We included relevant processes to describe mass transfer between the different fluids, radiative cooling by emission lines and grain charging and studied the effect of single-sized and multiple sized grains on the shock structure. Our models are the first of oblique fast-mode molecular shocks in which such a rigorous treatment of the dust grain dynamics has been combined with a self-consistent calculation of the thermal and ionisation structures including appropriate microphysics. At low densities the grains do not play any significant role in the shock dynamics. At high densities, the ionisation fraction is sufficiently low that dust grains are important charge and current carriers and, thus, determine the shock structure. We find that the magnetic field in the shock front has a significant rotation out of the initial upstream plane. This is most pronounced for single-sized grains and small angles of the shock normal with the magnetic field. Our results are similar to previous studies of steady C-type shocks showing that our method is efficient, rigorous and robust. Unlike the method employed in the previous most detailed treatment of dust in steady oblique fast-mode shocks, ours allows a reliable calculation even when chemical or other conditions deviate from local statistical equilibrium. We are also able to model transient phenomena.Comment: 9 pages, 4 figures, accepted for publication in MNRA

    Multifluid, Magnetohydrodynamic Shock Waves with Grain Dynamics II. Dust and the Critical Speed for C Shocks

    Full text link
    This is the second in a series of papers on the effects of dust on multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the influence of dust on the critical shock speed, v_crit, above which C shocks cease to exist. Chernoff showed that v_crit cannot exceed the grain magnetosound speed, v_gms, if dust grains are dynamically well coupled to the magnetic field. We present numerical simulations of steady shocks where the grains may be well- or poorly coupled to the field. We use a time-dependent, multifluid MHD code that models the plasma as a system of interacting fluids: neutral particles, ions, electrons, and various ``dust fluids'' comprised of grains with different sizes and charges. Our simulations include grain inertia and grain charge fluctuations but to highlight the essential physics we assume adiabatic flow, single-size grains, and neglect the effects of chemistry. We show that the existence of a phase speed v_phi does not necessarily mean that C shocks will form for all shock speeds v_s less than v_phi. When the grains are weakly coupled to the field, steady, adiabatic shocks resemble shocks with no dust: the transition to J type flow occurs at v_crit = 2.76 v_nA, where v_nA is the neutral Alfven speed, and steady shocks with v_s > 2.76 v_nA are J shocks with magnetic precursors in the ion-electron fluid. When the grains are strongly coupled to the field, v_crit = min(2.76 v_nA, v_gms). Shocks with v_crit < v_s < v_gms have magnetic precursors in the ion-electron-dust fluid. Shocks with v_s > v_gms have no magnetic precursor in any fluid. We present time-dependent calculations to study the formation of steady multifluid shocks. The dynamics differ qualitatively depending on whether or not the grains and field are well coupled.Comment: 43 pages with 17 figures, aastex, accepted by The Astrophysical Journa

    A numerical scheme for multifluid magnetohydrodynamics

    Full text link
    This paper describes a numerical scheme for multi-fluid hydrodynamics in the limit of small mass densities of the charged particles. The inertia of the charged particles can then be neglected, which makes it possible to write an evolution equation for the magnetic field that can be solved using an implicit scheme. This avoids the severe restriction on the stable timestep that would otherwise arise at high resolution, or when the Hall effect is large. Numerical tests show that the scheme can accurately model steady multi-fluid shock structures both with and without sub-shocks. Although the emphasis is on shocks in molecular clouds, a multi-dimensional version of this code could be applied to any Astrophysical flow in which ambi-polar diffusion or the Hall effect, or both play a significant role.Comment: 9 pages, 6 figures, MNRAS in pres

    The Effect of Proton Temperature Anisotropy on the Solar Minimum Corona and Wind

    Get PDF
    A semi-empirical, axisymmetric model of the solar minimum corona is developed by solving the equations for conservation of mass and momentum with prescribed anisotropic temperature distributions. In the high-latitude regions, the proton temperature anisotropy is strong and the associated mirror force plays an important role in driving the fast solar wind; the critical point where the outflow velocity equals the parallel sound speed is reached already at 1.5 Rsun from Sun center. The slow wind arises from a region with open field lines and weak anisotropy surrounding the equatorial streamer belt. The model parameters were chosen to reproduce the observed latitudinal extent of the equatorial streamer in the corona and at large distance from the Sun. We find that the magnetic cusp of the closed-field streamer core lies at about 1.95 Rsun. The transition from fast to slow wind is due to a decrease in temperature anisotropy combined with the non-monotonic behavior of the non-radial expansion factor in flow tubes that pass near the streamer cusp. In the slow wind, the plasma beta is of order unity and the critical point lies at about 5 Rsun, well beyond the magnetic cusp. The predicted outflow velocities are consistent with OVI Doppler dimming measurements from UVCS/SOHO. We also find good agreement with polarized brightness (pB) measurements from LASCO/SOHO and HI Ly-alpha images from UVCS/SOHO.Comment: 36 pages, 13 figures. AAS LaTeX Macros v5.0. To appear in The Astrophysical Journal, Vol. 598, No. 2, Issue December 1, 200

    A transonic collisionless model of the solar wind

    Full text link
    Because of the semi-collisional nature of the solar wind, the collisionless or exospheric approach as well as the hydrodynamic one are both inaccurate. However, the advantage of simplicity makes them useful for enlightening some basic mechanisms of solar wind acceleration. Previous exospheric models have been able to reproduce winds that were already nearly supersonic at the exobase, the altitude above which there are no collisions. In order to allow transonic solutions, a lower exobase has to be considered, in which case the protons are experiencing a non-monotonic potential energy profile. This is done in the present work. In this model, the electron velocity distribution in the corona is assumed non-thermal. Parametric results are presented and show that the high acceleration obtained does not depend on the details of the non-thermal distributions. This acceleration seems, therefore, to be a robust result produced by the presence of a sufficient number of suprathermal electrons. A method for improving the exospheric description is also given, which consists in mapping particle orbits in terms of their invariants of motion.Comment: 18 pages, 18 figures, accepted for publication in The Astrophysical Journal (1 May 2004

    Silica in Protoplanetary Disks

    Full text link
    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found in the cometary dust samples collected from the STARDUST mission to Comet 81P/Wild 2. The silica in these protoplanetary disks may arise from incongruent melting of enstatite or from incongruent melting of amorphous pyroxene, the latter being analogous to the former. The high temperatures of 1200K-1300K and rapid cooling required to crystallize tridymite or cristobalite set constraints on the mechanisms that could have formed the silica in these protoplanetary disks, suggestive of processing of these grains during the transient heating events hypothesized to create chondrules.Comment: 47 pages, 9 figures, to appear in the 1 January, 2009 issue of the Astrophysical Journa

    Dust Processing in Disks around T Tauri Stars

    Get PDF
    The 8-14 micron emission spectra of 12 T Tauri stars in the Taurus/Auriga dark clouds and in the TW Hydrae association obtained with the Infrared Spectrograph (IRS; The IRS is a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and the Ames Research Center.) on board Spitzer are analyzed. Assuming the 10 micron features originate from silicate grains in the optically thin surface layers of T Tauri disks, the 8-14 micron dust emissivity for each object is derived from its Spitzer spectrum. The emissivities are fit with the opacities of laboratory analogs of cosmic dust. The fits include small nonspherical grains of amorphous silicates (pyroxene and olivine), crystalline silicates (forsterite and pyroxene), and quartz, together with large fluffy amorphous silicate grains. A wide range in the fraction of crystalline silicate grains as well as large silicate grains among these stars are found. The dust in the transitional-disk objects CoKu Tau/4, GM Aur, and DM Tau has the simplest form of silicates, with almost no hint of crystalline components and modest amounts of large grains. This indicates that the dust grains in these objects have been modified little from their origin in the interstellar medium. Other stars show various amounts of crystalline silicates, similar to the wide dispersion of the degree of crystallinity reported for Herbig Ae/Be stars of mass <2.5 solar masses. Late spectral type, low-mass stars can have significant fractions of crystalline silicate grains. Higher quartz mass fractions often accompany low amorphous olivine-to-amorphous pyroxene ratios. It is also found that lower contrast of the 10 micron feature accompanies greater crystallinity.Comment: AASTEX, 39 pages text, 14 figures, 4 tables, scheduled to be published July 2006 in the Astrophysical Journa
    corecore