18 research outputs found

    Neovascular Age-Related Macular Degeneration : A Visual Acuity Model of Natural Disease Progression and Ranibizumab Treatment Effect

    Get PDF
    Intravitreal ranibizumab is a first-line therapy for neovascular age-related macular degeneration (nAMD), but there is a need to optimize patient outcomes while minimizing treatment burden. Here, we developed an indirect response, nonlinear, mixed effects model of disease progression and drug effect in anti-vascular endothelial growth factor (VEGF) treatment-naïve patients. A total of 1,524 treatment-naïve patients and 29,754 visual acuity observations from the ANCHOR, MARINA, PIER, and EXCITE clinical trials informed the model. The model accurately described natural nAMD disease progression and predicted mean visual acuity gains in the HARBOR study, notably with a 2.0 mg ranibizumab dose not used for model development. Furthermore, individualized treatment regimens were shown by simulation to be a viable alternative to the commonly used pro re nata or fixed monthly dosing regimen approaches. Therefore, this model could be a useful tool to predict the outcomes of different, more patient-tailored treatment regimens in nAMD

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Bioequivalence tests based on individual estimates using non-compartmental or model-based analyses: evaluation of estimates of sample means and type I error for different designs.

    Get PDF
    International audiencePURPOSE: The main objective of this work is to compare the standard bioequivalence tests based on individual estimates of the area under the curve and the maximal concentration obtained by non-compartmental analysis (NCA) to those based on individual empirical Bayes estimates (EBE) obtained by nonlinear mixed effects models. METHODS: We evaluate by simulation the precision of sample means estimates and the type I error of bioequivalence tests for both approaches. Crossover trials are simulated under H ( 0 ) using different numbers of subjects (N) and of samples per subject (n). We simulate concentration-time profiles with different variability settings for the between-subject and within-subject variabilities and for the variance of the residual error. RESULTS: Bioequivalence tests based on NCA show satisfactory properties with low and high variabilities, except when the residual error is high, which leads to a very poor type I error, or when n is small, which leads to biased estimates. Tests based on EBE lead to an increase of the type I error, when the shrinkage is above 20%, which occurs notably when NCA fails. CONCLUSIONS: For small n or data with high residual error, tests based on a global data analysis should be considered instead of those based on individual estimates

    Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm.

    Get PDF
    International audienceIn this work, we develop a bioequivalence analysis using nonlinear mixed effects models (NLMEM) that mimics the standard noncompartmental analysis (NCA). We estimate NLMEM parameters, including between-subject and within-subject variability and treatment, period and sequence effects. We explain how to perform a Wald test on a secondary parameter, and we propose an extension of the likelihood ratio test for bioequivalence. We compare these NLMEM-based bioequivalence tests with standard NCA-based tests. We evaluate by simulation the NCA and NLMEM estimates and the type I error of the bioequivalence tests. For NLMEM, we use the stochastic approximation expectation maximisation (SAEM) algorithm implemented in monolix. We simulate crossover trials under H(0) using different numbers of subjects and of samples per subject. We simulate with different settings for between-subject and within-subject variability and for the residual error variance. The simulation study illustrates the accuracy of NLMEM-based geometric means estimated with the SAEM algorithm, whereas the NCA estimates are biased for sparse design. NCA-based bioequivalence tests show good type I error except for high variability. For a rich design, type I errors of NLMEM-based bioequivalence tests (Wald test and likelihood ratio test) do not differ from the nominal level of 5%. Type I errors are inflated for sparse design. We apply the bioequivalence Wald test based on NCA and NLMEM estimates to a three-way crossover trial, showing that Omnitrope®; (Sandoz GmbH, Kundl, Austria) powder and solution are bioequivalent to Genotropin®; (Pfizer Pharma GmbH, Karlsruhe, Germany). NLMEM-based bioequivalence tests are an alternative to standard NCA-based tests. However, caution is needed for small sample size and highly variable drug

    The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after multiple increasing oral doses in healthy men

    No full text
    © 2008 The Authors; Journal compilation © 2008 Blackwell Publishing LtdWHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • The pharmacokinetic profile, metabolism and proof of concept of a single oral dose of brivaracetam have been reported. • Previous studies have shown that it was well absorbed, had linear kinetics and was well tolerated, and suggested effective doses of 10–80 mg in photoparoxysmal epilepsy. WHAT THIS STUDY ADDS • We now report the pharmacokinetics, pharmacodynamics and tolerability in healthy volunteers after multiple doses. AIMS Brivaracetam is a novel synaptic vesicle protein 2A ligand that has shown potent activity in animal models of epilepsy. This study examined the pharmacokinetics, central nervous system pharmacodynamics and adverse event profile of multiple oral doses of brivaracetam in healthy male subjects. METHODS Three successive panels of 12 healthy male subjects received double-blind brivaracetam 200, 400 or 800 mg day−1 (all doses well above the expected therapeutic range) or placebo (9 : 3), in two divided doses, for 14 days. RESULTS Brivaracetam was rapidly absorbed (tmax∼2 h) and eliminated (t1/2 7–8 h). Volume of distribution was slightly lower than total body water. A small fraction of the dose (5–8%) was excreted unchanged in urine together with significant levels of metabolites, suggesting predominantly metabolic clearance. Based on 6-β-hydroxycortisol/cortisol ratios in urine, there was no evidence of induction of CYP3A4 activity. Saliva and plasma brivaracetam levels were highly correlated. Adverse events were mostly mild to moderate, central nervous system-related and resolved within the first day of treatment. No clinically relevant changes were observed in laboratory tests, vital signs, physical examinations or ECGs. Pharmacodynamic tests showed dose-related sedation and decreased alertness that only persisted at 800 mg daily. CONCLUSIONS Brivaracetam was well tolerated by healthy male volunteers at doses of 200–800 mg daily for 2 weeks, well above the expected clinically effective dose range. Brivaracetam had a favourable pharmacokinetic profile in this population, characterized by rapid absorption, volume of distribution limited to total body water, apparent single-compartment elimination and dose proportionality.Paul Rolan, Maria Laura Sargentini-Maier, Etienne Pigeolet and Armel Stocki

    Application of a Bayesian population approach to physiological modelling of mavoglurant pharmacokinetics

    No full text
    Mavoglurant (MVG) is an antagonist at the metabotropic glutamate receptor-5 currently under clinical development at Novartis Pharma AG for the treatment of central nervous system diseases. The aim of this study was to develop and optimise a population whole-body physiologically-based pharmacokinetic (WBPBPK) model for MVG, to predict the impact of drug-drug interaction (DDI) and age on its pharmacokinetics. In a first step, the model was fitted to intravenous (IV) data from a Phase-I clinical study in adults using a Bayesian approach. In a second step, the optimised model was used together with a mechanistic absorption model for exploratory Monte Carlo simulations. The ability of the model to predict MVG pharmacokinetics when orally co-administered with ketoconazole in adults or administered alone in 3 to 11 year-old children was evaluated using data from three other clinical studies. The population model allowed good description of both the median trend and inter-individual variability in MVG plasma pharmacokinetics following IV administration in adults. The Bayesian approach allowed uncertainty in some parameters to be reduced. Prediction of the DDI with ketoconazole was consistent with the results of a non-compartmental analysis of the clinical data (3-fold increase in systemic exposure). Scaling of the WBPBPK model allowed reasonable extrapolation of MVG pharmacokinetics from adults to children. The model could be used to predict plasma and brain (target site) concentration-time profiles following oral administration of various immediate-release formulations of MVG alone or when co-administered with other drugs, in adults as well as in children
    corecore