10 research outputs found

    Comparison of Disturbance Impacts to and Spatial Distribution of Biological Soil Crusts in the Little San Bernardino Mountains of Joshua Tree National Park, California

    Get PDF
    Biological soil crust ecology in the hot Mojave Desert is poorly understood with regard to crust distribution and abundance, as well as the impacts of trampling disturbance on crust development. Our objective was to study biological soil crusts in 2 areas of differing disturbance pressures in the high desert region of Joshua Tree National Park, California, with respect to visible crust cover and frequency, chlorophyll a, and soil stability. Impacts on biological soil crusts from 2 disturbance regimes, historic grazing and recent high knot traffic, were compared using a disturbance indicator. In addition, we measured a suite of abiotic and biotic soil parameters commonly associated with crust abundance and distribution and characterized occurrence with respect to 3 geomorphic features (pockets, slopes, and wash banks). Individual physical and chemical soil parameters historically have been associated with crust development. In contrast, this study demonstrates that geomorphic features with a suite of soil properties clearly impacted crust development. In both study areas, wash banks showed the best crust development (51.%-52% total crust cover) and slopes showed the poorest crust development (\u3c37% total crust cover). Lichens and mosses were best developed in the pocket areas (1.1% and 1.5% cover, 25%-30% frequency), which can accumulate and retain moisture during and following precipitation events. Our disturbance index suggested that the high-foot-traffic area, being associated with a reduction in visible crust cover, hiss experienced inure recent disturbance than the historically grazed sites. However, despite the reduction in cover, the high-foot-traffic area had more lichen and moss crusts, indicating that the crusts in this area are more successionally mature. In contrast, the historically grazed area showed clear signs of recovery from past grazing disturbance, with a higher visual cover of biological soil crusts. However, crusts also had lower biomass values, supporting an earlier successional stage. Overall, we conclude that biological soil crusts of the Mojave Desert are very different in composition, form, and ecology than crusts of other desert regions of North America

    Study of Local Seismic Events in Lithuania and Adjacent Areas Using Data from the PASSEQ Experiment

    No full text
    The territory of Lithuania and adjacent areas of the East European Craton have always been considered a region of low seismicity. Two recent earthquakes with magnitudes of more than 5 in the Kaliningrad District (Russian Federation) on 21 September 2004 motivated re-evaluation of the seismic hazard in Lithuania and adjacent territories. A new opportunity to study seismicity in the region is provided by the PASSEQ (Pasive Seismic Experiment) project that aimed to study the lithosphere–asthenosphere structure around the Trans-European Suture Zone. Twenty-six seismic stations of the PASSEQ temporary seismic array were installed in the territory of Lithuania. The stations recorded a number of local and regional seismic events originating from Lithuania and adjacent areas. This data can be used to answer the question of whether there exist seismically active tectonic zones in Lithuania that could be potentially hazardous for critical industrial facilities. Therefore, the aim of this paper is to find any natural tectonic seismic events in Lithuania and to obtain more general view of seismicity in the region. In order to do this, we make a manual review of the continuous data recorded by the PASSEQ seismic stations in Lithuania. From the good quality data, we select and relocate 45 local seismic events using the well-known LocSAT and VELEST location algortithms. In order to discriminate between possible natural events, underwater explosions and on-shore blasts, we analyse spatial distribution of epicenters and temporal distribution of origin times and perform both visual analysis of waveforms and spectral analysis of recordings. We show that the relocated seismic events can be grouped into five clusters (groups) according to their epicenter coordinates and origin and that several seismic events might be of tectonic origin. We also show that several events from the off-shore region in the Baltic Sea (at the coasts of the Kaliningrad District of the Russian Federation) are non-volcanic tremors, although the origin of these tremor-type events is not clear

    Local Seismic Events in the Area of Poland Based on Data from the PASSEQ 2006-2008 Experiment

    No full text
    PASSEQ 2006-2008 (Passive Seismic Experiment in TESZ; Wilde-Piórko et al. 2008) was the biggest passive seismic experiment carried out so far in the area of Central Europe (Poland, Germany, the Czech Republic and Lithuania). 196 seismic stations (including 49 broadband seismometers) worked simultaneously for over two years. During the experiment, multiple types of data recorders and seismometers were used, making the analysis more complex and time consuming. The dataset was unified and repaired to start the detection of local seismic events. Two different approaches for detection were applied for stations located in Poland. The first one used standard STA/LTA triggers (Carl Johnson’s STA/LTA algorithm) and grid search to classify and locate the events. The result was manually verified. The second approach used Real Time Recurrent Network (RTRN) detection (Wiszniowski et al. 2014). Both methods gave similar results, showing four previously unknown seismic events located in the Gulf of Gdansk area, situated in the southern Baltic Sea. In this paper we discuss both detection methods with their pros and cons (accuracy, efficiency, manual work required, scalability). We also show details of all detected and previously unknown events in the discussed area

    Upper mantle structure around the Trans-European Suture Zone obtained by teleseismic tomography

    No full text
    The presented study aims to resolve the upper mantle structure around the Trans-European Suture Zone (TESZ), which is the major tectonic boundary in Europe. The data of 183 temporary and permanent seismic stations operated during the period of the PASsive Seismic Experiment (PASSEQ) 2006–2008 within the study area from Germany to Lithuania was used to compile the data set of manually picked 6008 top-quality arrivals of P waves from teleseismic earthquakes. We used the TELINV nonlinear teleseismic tomography algorithm to perform the inversions. As a result, we obtain a model of P wave velocity variations up to about �3% with respect to the IASP91 velocity model in the upper mantle around the TESZ. The higher velocities to the east of the TESZ correspond to the older East European Craton (EEC), while the lower velocities to the west of the TESZ correspond to younger western Europe.We find that the seismic lithosphere–asthenosphere boundary (LAB) is more distinct beneath the Phanerozoic part of Europe than beneath the Precambrian part. To the west of the TESZ beneath the eastern part of the Bohemian Massif, the Sudetes Mountains and the Eger Rift, the negative anomalies are observed from a depth of at least 70 km, while under the Variscides the average depth of the seismic LAB is about 100 km.We do not observe the seismic LAB beneath the EEC, but beneath Lithuania we find the thickest lithosphere of about 300 km or more. Beneath the TESZ, the asthenosphere is at a depth of 150– 180 km, which is an intermediate value between that of the EEC and western Europe. The results imply that the seismic LAB in the northern part of the TESZ is in the shape of a ramp dipping to the northeasterly direction. In the southern part of the TESZ, the LAB is shallower, most probably due to younger tectonic settings. In the northern part of the TESZ we do not recognize any clear contact between Phanerozoic and Proterozoic Europe, but further to the south we may refer to a sharp and steep contact on the eastern edge of the TESZ. Moreover, beneath Lithuania at depths of 120–150 km, we observe the lower velocity area following the boundary of the proposed paleosubduction zone

    Traces of the crustal units and the upper-mantle structure in the southwestern part of the East European Craton

    No full text
    The presented study is a part of the passive seismic experiment PASSEQ 2006–2008, which took place around the Trans-European Suture Zone (TESZ) from May 2006 to June 2008. The data set of 4195 manually picked arrivals of teleseismic P waves of 101 earthquakes (EQs) recorded in the seismic stations deployed to the east of the TESZ was inverted using the non-linear teleseismic tomography algorithm TELINV. Two 3-D crustal models were used to estimate the crustal travel time (TT) corrections. As a result, we obtain a model of P-wave velocity variations in the upper mantle beneath the TESZ and the East European Craton (EEC). In the study area beneath the craton, we observe up to 3% higher and beneath the TESZ about 2–3% lower seismic velocities compared to the IASP91 velocity model. We find the seismic lithosphere–asthenosphere boundary (LAB) beneath the TESZ at a depth of about 180 km, while we observe no seismic LAB beneath the EEC. The inversion results obtained with the real and the synthetic data sets indicate a ramp shape of the LAB in the northern TESZ, where we observe values of seismic velocities close to those of the craton down to about 150 km. The lithosphere thickness in the EEC increases going from the TESZ to the NE from about 180 km beneath Poland to 300 km or more beneath Lithuania. Moreover, in western Lithuania we find an indication of an uppermantle dome. In our results, the crustal units are not well resolved. There are no clear indications of the features in the upper mantle which could be related to the crustal units in the study area. On the other hand, at a depth of 120–150 km we indicate a trace of a boundary of proposed palaeosubduction zone between the East Lithuanian Domain (EL) and theWest Lithuanian Granulite Domain (WLG). Also, in our results, we may have identified two anorogenic granitoid plutons

    A continuous flow-batch hybrid reactor for commodity chemical synthesis enabled by inline NMR and temperature monitoring

    Get PDF
    Inline, real time NMR and temperature measurements have been used to optimise the continuous flow synthesis of difluoromethyltrimethylsilane (TMSCF2H) by the reduction of the Ruppert-Prakash reagent (TMSCF3). These measurements were used to maximise the space-time-yield, while ensuring this exothermic process remains safe. In this way, a three-fold increase in space-time-yield was achieved compared to the reported batch procedure, isolating 25 g of pure TMSCF2H after 105 min

    Thousands of small, novel genes predicted in global phage genomes

    No full text
    Fremin BJ, Bhatt AS, Kyrpides NC, et al. Thousands of small, novel genes predicted in global phage genomes. Cell Reports. 2022;39(12): 110984

    Unraveling the functional dark matter through global metagenomics

    No full text
    Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter
    corecore