82 research outputs found

    Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design

    Get PDF
    The main task of the medicinal chemist is to design molecules that interact specifically with derailed or degenerating processes in a diseased organism, translating the available knowledge of pathobiochemical and physiological data into chemically useful information and structures. Current knowledge of the biological and chemical processes underlying diseases is vast and rapidly expanding. In particular the unraveling of the genome in combination with, for instance, the rapid development of structural biology has led to an explosion in available information and identification of new targets for chemotherapy. The task of translating this wealth of data into active and selective new drugs is an enormous, but realistic, challenge. It requires knowledge from many different fields, including molecular biology, chemistry, pharmacology, physiology, and medicine and as such requires a truly interdisciplinary approach. Ultimately, the goal is to design molecules that satisfy all the requirements for a candidate drug to function therapeutically. Therapeutic activity can then be achieved by an understanding of and control over structure and reactivity of the candidate drug through molecular manipulation

    АтСросклСроз: патогСнСтичСскиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ лСчСния

    Get PDF
    ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² риска развития атСросклСроза, Π΄Π°Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° ряда Ρ‚Π΅ΠΎΡ€ΠΈΠΉ, ΠΎΠ±ΡŠΡΡΠ½ΡΡŽΡ‰ΠΈΡ… появлСниС атСросклСротичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ. ΠŸΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ΡΡ Ρ€ΠΎΠ»ΡŒ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ дисфункции Π² прогрСссировании ΠΈ обострСнии ΡΠ΅Ρ€Π΄Π΅Ρ‡Π½ΠΎβˆ’ΡΠΎΡΡƒΠ΄ΠΈΡΡ‚Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ соврСмСнныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ атСросклСроза.Risk factors of atherosclerosis development are described, a number of theories explaining atherosclerotic changes appearance in the coronary arteries are analyzed critically. The role of endothelial dysfunction in progress and exacerbation of cardiovascular diseases is emphasized. Contemporary approaches to atherosclerosis treatment are discussed

    High-Yield 5-Hydroxymethylfurfural Synthesis from Crude Sugar Beet Juice in a Biphasic Microreactor

    Get PDF
    5-Hydroxymethylfurfural (HMF) is an important biobased platform chemical obtainable in high selectivity by the hydrolysis of fructose (FRC). However, FRC is expensive, making the production of HMF at a competitive market price highly challenging. Here, it is shown that sugar beet thick juice, a crude, sucrose-rich intermediate in sugar refining, is an excellent feedstock for HMF synthesis. Unprecedented high selectivities and yields of '90 % for HMF were achieved in a biphasic reactor setup at 150 Β°C using salted diluted thick juice with H2SO4 as catalyst and 2-methyltetrahydrofuran as a bioderived extraction solvent. The conversion of glucose, obtained by sucrose inversion, could be limited to '10 mol %, allowing its recovery for further use. Interestingly, purified sucrose led to significantly lower HMF selectivity and yields, showing advantages from both an economic and chemical selectivity perspective. This opens new avenues for more cost-effective HMF production

    Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus niger cell factories

    Get PDF
    Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Results Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. Conclusions This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.Peer reviewe

    Robust Bayes-Like Estimation: Rho-Bayes estimation

    Full text link
    We consider the problem of estimating the joint distribution PP of nn independent random variables within the Bayes paradigm from a non-asymptotic point of view. Assuming that PP admits some density ss with respect to a given reference measure, we consider a density model Sβ€Ύ\overline S for ss that we endow with a prior distribution Ο€\pi (with support Sβ€Ύ\overline S) and we build a robust alternative to the classical Bayes posterior distribution which possesses similar concentration properties around ss whenever it belongs to the model Sβ€Ύ\overline S. Furthermore, in density estimation, the Hellinger distance between the classical and the robust posterior distributions tends to 0, as the number of observations tends to infinity, under suitable assumptions on the model and the prior, provided that the model Sβ€Ύ\overline S contains the true density ss. However, unlike what happens with the classical Bayes posterior distribution, we show that the concentration properties of this new posterior distribution are still preserved in the case of a misspecification of the model, that is when ss does not belong to Sβ€Ύ\overline S but is close enough to it with respect to the Hellinger distance.Comment: 68 page

    Electronic and bite angle effects in catalytic C-O bond cleavage of a lignin model compound using ruthenium xantphos complexes

    Get PDF
    The authors would like to thank the EPSRC (Global Engagement grant EP/K00445X/1 and critical mass grant EP/J018139/1) and the European Union (Marie Curie ITN β€˜SuBiCat’ PITN-GA-2013-607044) for financial support. NMSF-Swansea and Mr. Stephen Boyer are kindly acknowledged for mass spectrometry and elemental analysis, respectively.Bite angle and electronic effects on the ruthenium-diphosphine catalysed ether bond cleavage of the lignin Ξ²-O-4 model compound 2-phenoxy-1-phenethanol were tested. Enhanced conversion of the substrate was observed with increasing Οƒ-donor capacity of the ligands. Kinetic and thermodynamic data suggest oxidative addition of the dehydrogenated model compound to the diphosphine Ru(0) complex to be rate-limiting.PostprintPeer reviewe

    Catalytic fast pyrolysis of biomass : catalyst characterization reveals the feed-dependent deactivation of a technical ZSM-5-based catalyst

    Get PDF
    Catalyst deactivation due to coking is a major challenge in the catalytic fast pyrolysis (CFP) of biomass. Here, a multitechnique investigation of a technical Al2O3-bound ZSM-5-based extrudate catalyst, used for the CFP of pine wood and cellulose (at a reactor temperature of 500 Β°C), provided insight into the effects of extrusion, the catalytic pyrolysis process, and catalyst regeneration on the catalyst structure. As a result of a reduction in acidity and surface area due to the coking catalyst, the activity dropped drastically with increasing time-on-stream (TOS), as evidenced by a decrease in aromatics yield. Strikingly, confocal fluorescence microscopy at the single-particle level revealed that vapor components derived from whole biomass or just the cellulose component coke differently. While pine-wood-derived species mainly blocked the external area of the catalyst particle, larger carbon deposits were formed inside the catalyst’s micropores with cellulose-derived species. Pyridine FT-IR and solid-state NMR spectroscopy demonstrated irreversible changes after regeneration, likely due to partial dealumination. Taken together with <30 g kg–1 aromatics yield on a feed basis, the results show a mismatch between biomass pyrolysis vapors and the technical catalyst used due to a complex interplay of mass transfer limitations and CFP chemistry

    Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols

    Get PDF
    The synthesis and functionalization of imines and amines are key steps in the preparation of many fine chemicals and for pharmaceuticals in particular. Traditionally, metal complexes are used as homogeneous catalysts for these organic transformations. Here we report gold-palladium and ruthenium-palladium nano-alloys supported on TiO2 acting as highly efficient heterogeneous catalysts for the one-pot synthesis of the imine N-benzylideneaniline and the secondary amine N-benzylaniline directly from the easily available and stable nitrobenzene and benzyl alcohol precursors using a hydrogen auto-transfer strategy. These reactions were carried out without any added external hydrogen, sacrificial hydrogen donor or a homogeneous base. The bimetallic catalysts were prepared by the recently developed modified impregnation strategy, giving efficient control of size and nano-alloy composition. Both bimetallic catalysts were found to be far more active than their monometallic analogues due to a synergistic effect. Based on the turnover numbers the catalytic activities follow the order Ru < Pd < Au << Au-Pd < Ru-Pd. Aberration corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption spectroscopy (XAFS) studies of these catalysts revealed that the reason for the observed synergistic effect is the electronic modification of the metal sites in the case of the Au-Pd system and a size stabilisation effect in the case of the Ru-Pd catalyst

    Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation

    Get PDF
    The authors gratefully acknowledge financial support of NWO, the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science. The NWO Large grant 175.107.301.10 is also gratefully acknowledged.Kraft lignin, the main by-product of the pulping industry, is an abundant, yet highly underutilized renewable aromatic polymer. During kraft pulping, the lignin undergoes extensive structural modification, with many labile native bonds being replaced by new, more recalcitrant ones. Currently little is known about the nature of those bonds and linkages in kraft lignin, information that is essential for its efficient valorization to renewable fuels, materials or chemicals. Here, we provide detailed new insights into the structure of softwood kraft lignin, identifying and quantifying the major native as well as kraft pulping-derived units as a function of molecular weight. De novo synthetic kraft lignins, generated from (isotope labelled) dimeric and advanced polymeric models, provided key mechanistic understanding of kraft lignin formation, revealing different process dependent reaction pathways to be operating. The discovery of a novel kraft-derived lactone condensation product proved diagnostic for the identification of a previously unknown homovanillin based condensation pathway. The lactone marker is found in various different soft- and hardwood kraft lignins, suggesting the general pertinence of this new condensation mechanism for kraft pulping. These novel structural and mechanistic insights will aid the development of future biomass and lignin valorization technologies.Publisher PDFPeer reviewe

    Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD+

    Get PDF
    A series of neutral Ru-II half-sandwich complexes of the type [(eta(6)-arene)Ru(N,N')Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N' is N-(2-aminoethyl) -4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn), or N-(2-aminoethyl)-methylenesulfonamide (MsEn) were synthesized and characterized. X-ray crystal structures of [(p-cym)Ru(MsEn)Cl] (1), [(hmb)Ru(TsEn)Cl] (5), [(hmb)Ru(TfEn)Cl] (6), [(bip)Ru(MsEn)Cl] (7), and [(bip)Ru(TsEn)Cl] (8) have been determined. The complexes can regioselectively catalyze the transfer hydrogenation of NAD(+) to give 1,4-NADH in the presence of formate. The turnover frequencies (TOF) when the arene is varied decrease in the order bn > bip > p-cym > hmb for complexes with the same N,N' chelating ligand. The TOF decreased with variation in the N,N' chelating ligand in the order TfEn > TsEn > MsEn for a given arene. [(bn)Ru(TfEn)Cl] (12) was the most active, with a TOP of 10.4 h(-1). The effects of NAD(+) and formate concentration on the reaction rates were determined for [(p-cym)Ru(TsEn)Cl] (2). Isotope studies implicated the formation of [(arene)Ru(N,N')(H)] as the rate-limiting step. The coordination of formate and subsequent CO2 elimination to generate the hydride were modeled computationally by density functional theory (DFT). CO2 elimination occurs via a two-step process with the coordinated formate first twisting to present its hydrogen toward the metal center. The computed barriers for CO2 release for arene = benzene follow the order MsEn > TsEn > TfEn, and for the Ms En system the barrier followed bn < hmb, both consistent with the observed rates. The effect of methanol on transfer hydrogenation rates in aqueous solution was investigated. A study of pH dependence of the reaction in D2O gave the optimum pH* as 7.2 with a TOF of 1.58 h(-1) for 2. The series of compounds reported here show an improvement in the catalytic activity by an order of magnitude compared to the ethylenediamine analogues
    • …
    corecore