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High-Yield 5-Hydroxymethylfurfural Synthesis from Crude
Sugar Beet Juice in a Biphasic Microreactor
Ria M. Abdilla-Santes+,[a, b] Wenze Guo+,[a] Pieter C. A. Bruijnincx,[c, d] Jun Yue,[a]

Peter J. Deuss,*[a] and Hero J. Heeres*[a]

Introduction

As a response to the anticipated decrease in fossil fuel re-
serves, fluctuating crude oil prices, and environmental issues

related to the use of fossil resources, their replacement with re-
newable alternatives is receiving much attention. Biomass is an

important renewable biobased feedstock, particularly for
chemicals and materials production. Here, a major role is as-

signed to platform chemicals that are readily accessible from

biomass and can serve as chemical building block for subse-
quent divergent transformations into final biobased products.[1]

One identified versatile furanic platform chemical is 5-hydroxy-
methylfurfural (HMF).[2] It is attainable from different carbohy-

drate sources through dehydration by using cheap mineral
acids catalysts such as HCl and H2SO4 and can be converted

into a wide range of commodity chemicals and products.[3] Dif-
ferent carbohydrate feedstocks have been investigated for

HMF synthesis ranging from monomeric carbohydrates, such

as glucose (GLC) and fructose (FRC), to polymeric carbohy-
drates such as starch and cellulose.[2a, 4] Of the readily accessible

monomeric carbohydrates, FRC has been shown to be the
most suitable substrate because it offers the highest HMF se-

lectivity, whereas the considerably cheaper GLC leads to low
selectivity.[2a, 5] When considering the technoeconomic viability
of HMF production on a large scale, the feedstock costs are a

major contributor to the overall manufacturing costs. As such,
the identification of alternative, abundant, and cheap carbohy-
drate sources, preferably rich in FRC, is of high interest.[3]

Sucrose (SUC), a disaccharide of FRC and GLC, has been ex-

plored for HMF synthesis.[6] SUC, widely available as table
sugar, is cheaper than pure FRC and is produced in large vol-

umes from sugar beet and sugar cane. In 2017, the global
sugar production was estimated to be 179.6 million tonnes,
with the EU contributing to 10 % of the total amount.[7] Until

2017, the production of sugar in the EU was strictly regulated
by the European Commission.[8] From 2017 onwards, restric-

tions were abandoned, which led to increased production
levels in the EU and lower SUC prices in the long term.[9] As

such, there is an incentive for sugar beet refiners to explore

new markets and possibilities. Meanwhile, the European Com-
mission has targets to replace 30 % of fossil-based chemicals

and materials with biobased versions and to supply 25 % of Eu-
rope’s transport energy needs by using sustainable advanced

biofuels by 2030.[10] As such, both from a price and legislation

5-Hydroxymethylfurfural (HMF) is an important biobased plat-
form chemical obtainable in high selectivity by the hydrolysis

of fructose (FRC). However, FRC is expensive, making the pro-
duction of HMF at a competitive market price highly challeng-
ing. Here, it is shown that sugar beet thick juice, a crude, su-
crose-rich intermediate in sugar refining, is an excellent feed-
stock for HMF synthesis. Unprecedented high selectivities and
yields of >90 % for HMF were achieved in a biphasic reactor

setup at 150 8C using salted diluted thick juice with H2SO4 as
catalyst and 2-methyltetrahydrofuran as a bioderived extrac-

tion solvent. The conversion of glucose, obtained by sucrose
inversion, could be limited to <10 mol %, allowing its recovery
for further use. Interestingly, purified sucrose led to significant-
ly lower HMF selectivity and yields, showing advantages from
both an economic and chemical selectivity perspective. This
opens new avenues for more cost-effective HMF production.
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perspective, the coproduction of biobased products such as
HMF in a sugar beet refinery is highly attractive.

Thick juice is an intermediate product in a typical sugar beet
refinery. It is a viscous, clear, yellow liquid rich in SUC (typically

60–70 wt %) with residual water, various salts, organic acids,
and minerals (see Table S1 in the Supporting Information for

details provided in the literature).[11] To obtain crystalline SUC,
the thick juice is treated in specially designed vacuum pans to
remove water and allow crystallization.[12] Thick juice can be
stored (for up to 1 year) and used for the production of sugar
after the sugar beet processing campaign. For the coproduc-
tion of biobased chemicals in a sugar refinery, the use of thick
juice instead of crystalline SUC is expected to be beneficial be-
cause the costly crystallization step is avoided. The conversion
of thick juice to bioethanol[11a, 13] and biohydrogen[14] through

fermentation routes has been successfully demonstrated. How-

ever, studies on (chemo-)catalytic valorization routes of thick
juice to platform molecules such as HMF are limited to only

one report from our group.[11b]

We have recently reported a comprehensive kinetic study on

the conversion of pure SUC to HMF and levulinic acid (LA) by
using H2SO4 in water.[6a] The initial step involves rapid hydroly-

sis of the glycosidic bond between the sugar monomers in

SUC to give FRC and GLC. Subsequently, FRC is dehydrated to
give HMF in moderate yield. For example, only 22 mol % HMF

yield was obtained from an aqueous solution of SUC at 140 8C
with H2SO4 as the catalyst.[6a] The formation of HMF from GLC

was shown to be slow and to occur with a low selectivity,[15]

and it is thought to require an initial isomerization step of GLC

to FRC.[16] The main reason for the low HMF yields from carbo-

hydrates in aqueous systems is the formation of byproducts
such as the soluble and insoluble oligomers and polymers

known as humins. Additionally, HMF itself is not stable under
the prevailing reaction conditions and is easily converted to LA

and formic acid (FA). For these reasons, alternative dehydration
methodologies have been developed, including biphasic con-

cepts with advanced catalyst systems[17] and reactor designs[18]

as well as combinations of alternative solvent systems using
either monophasic or biphasic liquid–liquid systems with cata-
lysts.[2a, 19] Biphasic systems often involve an aqueous phase
with the catalyst and an organic phase with a high affinity for

HMF. Methyl isobutyl ketone (MIBK) and n-butanol are among
the most common organic solvents used and have been

shown to lead to reduced byproduct formation by extraction
of HMF from the reactive aqueous phase.[3b, 20] This effect can
be enhanced by the addition of salts such as NaCl to the aque-

ous phase.[21] An overview of selected reports on the conver-
sion of SUC to HMF in biphasic systems is provided in Table S2

(in the Supporting Information).
When using SUC as a source for HMF, two main strategies

can be considered: in the first approach, FRC is converted to

HMF, and the remaining GLC is in situ isomerized to FRC and
subsequently converted to HMF. For this, effective isomeriza-

tion catalysts are required, and well-known examples are CrCl3

and SnCl4.[22] However, these catalysts are expensive, toxic, and

do not always show the desirable compatibility with the dehy-
dration reaction. Additionally, this method typically requires

the use of ionic liquids or other alternative, expensive solvents
to obtain high HMF yields from GLC. The second approach
relies on the conversion of SUC to HMF (from FRC) and GLC.
This is possible through careful control of the reaction condi-
tions (Figure 1) by making use of the fact that FRC is signifi-
cantly more reactive than GLC at temperatures around

140 8C.[6a, 23] This then allows for GLC to be separated after the
reaction and subsequently processed to other biobased chemi-
cals or isomerized to FRC and then recycled to the reactor.

Here, we present a study on the synthesis of HMF and GLC

from thick juice in a biphasic liquid–liquid system by using
H2SO4 as the catalyst. Initial experiments were performed in a

batch reactor, with or without salt addition. In addition to

commonly used MIBK, 2-methyltetrahydrofuran (MTHF) was
used as an extraction solvent, which is considered a green, bio-

based solvent obtained by hydrogenation of LA or g-valerolac-
tone (GVL).[24] This approach showed that unexpectedly high

HMF yields and good yields of coproduced GLC can be ach-
ieved from thick juice. Subsequently, the use of a biphasic con-
tinuous microreactor operated in the slug-flow regime was

shown to be extremely beneficial for further improving HMF
selectivity (Figure 2).[25] The results were compared with those
obtained for pure SUC, clearly showing the beneficial effect of
the use of crude thick juice for HMF and GLC production.

Results and Discussion

Thick juice and sucrose biphasic reactions in a batch setup

Initial reactions were performed in batch mode by using stirred
glass pressure tubes. To ensure low GLC conversion and to

avoid excessive humin formation, the temperature was set to
150 8C and an extraction solvent was used.[6a] The reactions,

monitored at different reaction times, were run at equal H2SO4

concentrations (0.05 m, pH 1.6) for MTHF (Figure S1 a in the
Supporting Information) and MIBK (Figure S2 in the Supporting

Information) as well as at a set pH achieved by the careful ad-
dition of H2SO4 (pH 0.7 at 25 8C, Figure 3 a). Because HMF is

highly soluble in water, an excess of the organic solvent (4:1,
v/v) was used to ensure high extraction efficiencies.[26]

Figure 1. Sugar beet thick juice-based SUC to HMF and GLC strategy applied
in this work.
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Because SUC is immediately converted to GLC and FRC at
acidic pH, the SUC concentration is not shown in the graphs.

At pH 1.6, half of the released FRC was converted after approx-

imately 30 min for both biphasic solvent systems, whereas at
pH 0.7 full conversion was achieved within 20 min. A higher

HMF selectivity was observed when using MTHF compared
with MIBK (82 and 75 %, respectively, after 30 min), which was

attributed to the higher partition coefficient of HMF in MTHF/
water (P = 1.9; determined experimentally) compared with

HMF in MIBK/water (P = 1.0), demonstrating the beneficial

effect of more extensive removal of HMF from the acid aque-
ous phase.[17, 27] Low GLC conversion (<10 %) and an overall ex-
cellent carbon balance of >90 % was observed at incomplete
FRC conversion for both extraction solvents and even for

MTHF at pH 0.7. After full FRC conversion was reached, the
carbon balance gradually decreased owing to unselective GLC

conversion as well as HMF decomposition. This is likely associ-
ated with the formation of humin substances, which are not
detected by HPLC.

To further improve HMF extraction from the aqueous phase,
the effect of NaCl (0.3 g mL@1) on HMF production from thick

juice was determined in batch at equal H2SO4 concentrations
(MTHF, Figure S1 b; MIBK, Figure S3 in the Supporting Informa-

tion). The addition of salt led to a nearly two-fold increase for

the partition coefficient of HMF (from 1 to 1.8 for MIBK and
from 1.9 to 3.7 for MTHF) by the salting-out effect, in line with

other studies.[17a,b, 28] This led to significantly higher HMF selec-
tivity (>90 %) at high FRC conversion (>99 %) and low GLC

conversion (<10 %). Because the additional of salt also led to a
significant pH drop and thus increase in reaction rate,[29] the re-

actions with and without salt were also compared at equal pH
(MTHF, Figure 3 b). Satisfyingly, this also resulted in a high HMF
selectivity (96 %) although at the cost of GLC (17 % conversion)
at similar FRC conversion (>99 %, 30 min). A key observation

was that the concentrations of HMF did not decrease in these
experiments, which is very different compared with previous

reports using pure SUC[6a] as well as from our own comparative
experiments (shown below). Indeed, an excellent carbon bal-
ance closure (>95 %) was found even at such high FRC conver-

sions. Humin formation was observed in the form of black pre-
cipitate and some coloration of the extraction liquid, but to a
very minimal extent. Additionally, only traces of LA and FA
were detected by HPLC. In these experiments, the latter two
were even excluded from the carbon balance because the con-
centrations were too low for adequate quantification. In addi-

tion to NaCl, experiments were performed with Na2SO4 (Figur-

es S4 and S5 in the Supporting Information). Although the salt-
ing-out effect for salts with double-charged anions is signifi-

cantly larger than for salts with single-charged ions (for NaCl :
from 1.8 to 3.5 with MIBK and from 3.7 to 4.4 with MTHF),[30]

this did not lead to improved HMF yield owing to the anion ef-
fects on the different reaction rates.[17b, 31]

To compare the performance of thick juice to purified su-

crose, similar biphasic reactions were performed with SUC by
using MTHF as the extraction solvent (pH 0.7 Figure 3 c, pH 0.3

Figure S1 c in the Supporting Information). In general, the reac-
tions with pure SUC as the starting material show somewhat

higher conversion rates for both FRC and GLC compared with
the reactions with thick juice even at equal pH. This is accom-

panied by a lower selectivity for HMF (87–89 mol % at 20–

30 min) compared with thick juice (96 mol % at 20–30 min).
Some contribution from GLC to the HMF yield can also not be

excluded in this case because GLC conversion is significantly
higher (>40 mol % after 30 min). LA and FA are formed (up to

0.04 m, see Figure S6 in the Supporting Information) and the
carbon balance (including LA and FA) is significantly lower

(82 %) compared with thick juice. This indicates the formation

of substantial amounts of unidentified compounds (e.g. , solu-
ble humins) as also evident from the increased formation of

black precipitate as well as significantly more coloration of the
extraction phase. A possible explanation for the observed dif-
ference between pure SUC and thick juice must lie with the
difference in composition. Besides SUC, thick juice contains
salts, organic acids, and other minor components (Table S1 in

the Supporting Information).[11] However, the presence of the
salts alone cannot explain the difference, as demonstrated by

an experiment of pure SUC in which NaCl was added to the
level of those present in thick juice, which led to an overall

10 % lower carbon balance (Figure S7 in the Supporting Infor-
mation). What (combinations of) components in thick juice

cause these improved results for HMF synthesis is the subject

of further studies. Here, we focused on optimizing the yields of
HMF from thick juice even further.

Figure 2. Schematic overview of the continuous slug-flow microreactor
setup used in this study to allow for efficient HMF and GLC synthesis from
SUC contained in sugar beet thick juice.
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Thick juice and sucrose biphasic reactions in a continuous
slug-flow microreactor setup

With the obtained excellent results in hand for the conversion
of SUC in thick juice to HMF, the reaction was performed in a

continuous slug-flow microreactor to further improve per-

formance (Figure 2). The use of such a setup leads to improved
mass-transfer characteristics and thus a more efficient extrac-

tion of HMF from the aqueous phase as well as improved heat
transfer.[18b, 32] MTHF was selected as the solvent of choice

based on the results obtained in batch (see above). A micro-
reactor made up of a hydrophobic perfluoroalkoxy alkane

(PFA) tubing was used, and as such the aqueous phase is pres-

ent as droplets and the MTHF phase forms the slugs (Figure S8
in the Supporting Information). This was done to prevent sig-

nificant deposition of humins because these are initially
formed in the aqueous phase and thus will not come into con-

tact with the reactor wall. The experimental conditions were

similar to the batch system except for the pH, which was set
to 1.2, and the use of a lower NaCl concentration (0.1 g mL@1

aqueous) instead of 0.3 g mL@1 to avoid clogging of the tube
as a result of salt precipitation at the reactor outlet. Residence

time variations between 5 and 20 min (obtained by adjusting
the flow rates) were explored (Figure 4 a, see the Supporting

Figure 3. Concentration–time profile (left) and yield, selectivity, and carbon balance (right) of H2SO4-catalyzed SUC hydrolysis in a biphasic system with MTHF
as the extraction phase: a) thick juice without addition of salt (CSUC(equiv.),0 = 0.5 m, pHaqueous = 0.7 at 25 8C), b) thick juice with added 0.3 g mL@1 NaCl
(CSUC(equiv.),0 = 0.5 m, pHaqueous = 0.7 at 25 8C), and c) pure SUC with added 0.3 g mL@1 NaCl (CSUC(equiv.),0 = 0.5 m, pHaqueous = 0.7 at 25 8C). Reaction conditions:
T = 150 8C, aqueous/organic ratio: 1:4 v/v.

ChemSusChem 2019, 12, 4304 – 4312 www.chemsuschem.org T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim4307

Full Papers

http://www.chemsuschem.org


Information for details on the flow rates and residence time
determinations). Excellent performance with respect to HMF

selectivity was found in the microreactor, showing stable HMF
production over extended run times of up to 10 h (Figure S10

and Table S4 in the Supporting Information). HMF yields as

high as 91.6 mol % (93.6 mol % selectivity, 97.7 mol % FRC con-
version) were obtained at a residence time of 20 min. In addi-
tion, GLC conversion was very limited and at most 11.2 mol %
at 20 min residence time. A reaction with thick juice without

the addition of salt (NaCl) at higher pH was also performed for
reference (Figure S9 in the Supporting Information), showing

high selectivity but at lower FRC conversion. The use of higher
SUC concentration is beneficial for increasing the space–time
yield. In our setup, we could run a thick juice solution diluted

to 1 m SUCequiv. . This also led to good HMF selectivity (Table S5
in the Supporting Information) even after 10 h runtimes

(Table S4 in the Supporting Information). Operation with less
dilute thick juice was not possible owing to operational issues

with the feed pump related to the high viscosity of the feed.

Comparison of the results from the batch and flow experi-
ments shows that the conversion of FRC was significantly

higher in the microreactor, and particularly the HMF selectivity
was improved considerably if no salt was added (Table 1, en-

tries 1–4). High yields could be obtained in both setups al-
though here a higher salt concentration was used in batch

(Table 1, entries 5–7). Thus, the use of a microreactor can be
beneficial for thick juice conversion compared with a batch re-

actor. It is interesting to compare the performance of the thick
juice in the microreactor with that of pure SUC at the same pH
(Figure 4 b). In the microreactor, thick juice performed signifi-
cantly better than purified SUC. The selectivity of HMF from
the reaction with thick juice was higher at all residence times,

giving 93.6 mol % at 97.7 mol % FRC conversion compared
with only 84 mol % for the reaction with pure SUC at the same

Figure 4. Concentration–time profile (left) and yield, selectivity, and carbon balance (right) of a) thick juice and b) SUC hydrolysis in slug-flow microreactor in
a biphasic system with MTHF in the presence of NaCl (0.1 g mL@1) at different residence times obtained by adjusting the flow rate. Solid bar: HMF yield (FRC-
based); shaded bar: HMF selectivity (FRC-based); circle: carbon balance. Reaction conditions: CSUC(equiv.),0 = 0.48 m, T = 150 8C, aqueous/organic ratio 1:4 v/v,
pHaqueous = 1.2 (25 8C). Error bars represent average values from three separate experiments.

Table 1. Comparison of data for thick juice to HMF reaction in batch and
continuous setups.[a]

Entry Setup t[b]

[min]
pH CNaCl

[mg mL@1]
XFRC

[c]

[mol %]
SHMF

[c, d]

[mol %]

1 batch 15 1.6 – 24.1 76.7
2 cont. 15 1.6 – 43.9 84.1
3 batch 30 1.6 – 51.2 81.7
4 cont. 30 1.6 – 65.8 87.4
5 batch 20 0.7 0.3 99.2 95.7
6 cont. 15 1.2 0.1 94.4 91.5
7 cont. 20 1.2 0.1 97.7 93.6

[a] Reactions performed at T = 150 8C, H2O/MTHF ratio: 1:4 v/v, H2SO4 as
acid catalyst. [b] Batch/residence time. [c] Determined by HPLC. [d] Based
on FRC conversion.
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FRC conversion. In addition, the GLC conversion of 22.7 mol %
was far higher in experiments with pure SUC compared with

experiments (at 15 min residence time) with thick juice
(10.1 mol %), which is not advantageous considering that GLC

conversion does not lead to HMF but mostly to humins. Con-
sequently, the carbon balance for SUC is worse than for thick

juice, indicating that SUC gives higher amounts of unidentified
compounds such as oligomeric and polymeric humin-type

products. Also, some precipitation of such humins causes dis-

turbance of the flow patterns and eventually leads to block-
age, leading to lower reproducibility of the results from this re-

action, as was evident from the larger standard deviations
from multiple experiments. These differences between the use

of thick juice and pure SUC in the microreactor are in line with
the obtained batch data discussed above.

Comparison to literature data for HMF formation

An overview of literature data on the conversion of FRC (and

SUC) to HMF in biphasic liquid–liquid systems and a compari-
son with the data obtained in this study by using thick juice is

given in Table 2. Although direct comparison is somewhat

skewed owing to variations in process conditions, HMF yields
and selectivities based on converted FRC found in this study

(batch and continuous) are significantly higher than those re-
ported for pure carbohydrates. For pure SUC and FRC, previous

reports typically show 70–75 % selectivity for HMF at similar
conditions, something that was also observed in our batch ex-

periments for pure SUC. By using pure SUC in the continuous

slug-flow microreactor and in the presence of an extractive sol-
vent and 0.1 g mL@1 NaCl, this could be improved to 84 %,

which is already a significant increase over previous reports.
A further increase in HMF selectivity to over 90 % was reached

by using thick juice as a crude and significantly cheaper SUC
feedstock. This is a 15 % higher selectivity compared with pre-

vious reports and by far the best achieved thus far in an aque-

ous solvent system. Better selectivities have previously only
been achieved from FRC by using alternative solvent systems

such as ionic liquids, which provide significant challenges in
the recovery of HMF, solvent, and unconverted carbohydrate.

Conclusions

Thick juice has significant potential as feedstock for the syn-
thesis of 5-hydroxymethylfurfural (HMF), as shown here by an

aqueous biphasic reaction system using methyl isobutyl
ketone (MIBK) or 2-methyltetrahydrofuran (MTHF) as the ex-

traction solvent in batch and continuous setups. When using
this crude sucrose (SUC)-rich feedstock, excellent selectivities

for HMF were achieved in both setups, which surpass all previ-

ous reports in aqueous media. The best results in batch were
obtained with MTHF in the presence of NaCl, giving 96 mol %

selectivity of HMF at near quantitative fructose (FRC) conver-
sion after 15 min reaction time with 14 % glucose (GLC) con-

version or 89 % selectivity at higher pH with limited GLC con-
version (3.9 mol %) after 30 min reaction time. The use of a
continuous microreactor led to a similar HMF selectivity even

at lower NaCl concentrations. These high selectivities were
achieved by using sulfuric acid as a cheap catalyst and sodium
chloride as the sole additive to increase the extraction efficien-
cy. To illustrate the improvement from the use of thick juice

further, results with thick juice were compared with those for
pure SUC, reaching only 84 mol % HMF selectivity in the micro-

reactor setup. It is highly unusual that feedstock impurities

have such a dramatic positive effect on reaction performance,
but in this case, it seems that the use of the cheaper crude

feedstock offers a significant advantage. Nevertheless, the
exact nature that underlies this positive effect is difficult to de-

termine because thick juice is a highly complex mixture of
many different components. Although certain salts and organic

acids could be beneficial and explain the excellent results for

thick juice, further detailed studies are required to investigate
this further. Overall, this study implies that thick juice is a very

attractive feedstock for HMF synthesis. It is expected to be sig-
nificantly cheaper than refined SUC and as such will have a

positive effect on the technoeconomic viability of HMF produc-
tion. In addition, the current study showed that low GLC con-

versions are possible by proper tuning of the reaction condi-

tions, making use of the fact that FRC is by far more reactive
than GLC. This is of high relevance because GLC is known to

be far less selective for HMF synthesis than FRC. As such, the
unconverted GLC, present in the aqueous phase after reaction,

may either be isomerized to FRC and recycled to the reactor or

Table 2. Selected examples of HMF yields and selectivities in biphasic liquid–liquid systems in batch and continuous setups with MIBK and MTHF extrac-
tion solvents.[a]

Entry Feed Setup Conditions XFRC [mol %] SHMF [mol %] Ref.

1 FRC batch aqueous/MIBK 1:4, 150 8C, 30 min 23 43.5 [33]
2 FRC batch aqueous/MIBK 1:4, 160 8C, 2 h 96.8 76 [33]
3 FRC/GLC[b] cont. aqueous/MIBK 1:4, 140 8C, 2 h, 0.05 m H2SO4 94.4 72 [23]
4 FRC batch aqueous/MIBK 1:4, 150 8C, 45 min, 100 g L@1 H3BO4, 50 g L@1 NaCl 70 65.7 [34]
5 SUC batch aqueous/MIBK 1:4, 150 8C, 2 h, 100 g L@1 H3BO4, 50 g L@1 NaCl – 70 [34]
6 FRC cont. aqueous/MIBK 1:3, 140 8C, 15 min, 0.25 m HCl – 74[c] [35]
7 thick juice batch aqueous/MTHF 1:4, 150 8C, 20 min, pH 0.6, 0.3 g mL@1 NaCl 99.2 95.7 this work
8 thick juice cont. aqueous/MTHF 1:4, 150 8C, 20 min, pH 1.2, 0.1 g mL@1 NaCl 97.7 93.6 this work

[a] HMF selectivity shown in the table was calculated based on FRC. [b] 1:1 mixture. [c] Isolated yield.
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converted separately either by chemo- or biocatalytic conver-
sions to biobased products (e.g. , lactic acid, sorbitol, succinic

acid, etc.).

Experimental Section

Materials

Thick juice was kindly provided by Suiker Unie-Royal Cosun.
(62 wt % SUC determined by polarimeter and mild hydrolysis by
using 5 mm H2SO4 at 100 8C followed by quantification of FRC and
GLC by HPLC), H2SO4 (96–98 wt %), SUC (+99 wt %), GLC
(+99.5 wt %), FRC (99 wt %), NaCl, Na2SO4, MTHF, and FA were ob-
tained from Sigma–Aldrich (Steinheim, Germany). MIBK was ac-
quired from Merck Millipore (Darmstadt, Germany). LA was pur-
chased from Alfa Aesar. All chemicals were used without further
purification. For all experiments, Milli-Q water was used to prepare
the solutions.

Analytical techniques

The SUC content in the thick juice feed was determined by using
polarimetry (Schmidt and Haensch, Polatronic MH8). A series of
SUC solutions of known concentrations were prepared and the ob-
served rotation (aobs) of each solution was determined. Measure-
ments were performed at a wavelength (l) of 589.44 nm and in a
cell with a length of 100 mm. These data were used to calculate
the specific rotation of SUC ([a] ; see the Supporting Information
for details). Afterwards, a solution of thick juice with a known dilu-
tion factor was measured and used to calculate the SUC concentra-
tion in the thick juice feed. HPLC was used to determine the com-
position of the aqueous phases after reaction. The instrument con-
sisted of an Agilent 1200 pump, a Bio-Rad organic acid column
(Aminex HPX-87H), a Waters 410 differential refractive index detec-
tor, and a UV detector. The HPLC column was operated at 60 8C,
and aqueous H2SO4 (5 mm) was used as the mobile phase with a
flow rate of 0.55 mL min@1. The injection volume of the sample was
set at 5 mL. Concentrations of compounds in the product mixture
were determined by using calibration curves obtained by analyzing
standard solutions of known compounds with known concentra-
tions. GC [model: Finnigan, Trace GC Ultra, equipped with flame
ionization detector (FID) and Stabilwax-DA column 30 m V 0.32 mm
inner diameter and film thickness of 1 mm] was used to determine
the composition of the organic phases after reaction. The carrier
gas was helium with 2.2 mL min@1 flow rate, and the split ratio was
set at 50:1. The injector temperature was set at 260 8C. The oven
temperature was kept at 40 8C for 5 min, then increased to 240 8C
at a rate of 15 8C min@1, and then held at 240 8C for 10 min.

HMF formation in batch experiments

Reactions were performed in Ace pressure tubes (bushing type,
front seal, and volume&9 mL) with a length of 10.2 cm and an
outer diameter of 19 mm, equipped with a magnetic stirring bar.
The tubes were filled with a 1:4 v/v ratio of water and an organic
solvent (MIBK or MTHF). The water phase contained the appropri-
ate amount of thick juice or SUC and H2SO4 (0.5 and 0.05 m, re-
spectively). For some experiments with salt (NaCl or Na2SO4), 0.3 g
salt was added per mL of the aqueous phase (containing thick
juice or SUC) prior to mixing with the organic phase. As such, the
initial concentration of SUC (0.44 m) and catalyst (0.044 m) in the
aqueous phase were slightly different. Otherwise the pH value was

set by careful addition of H2SO4 to a salty solution of thick juice or
SUC. After filling, the tubes were closed and submerged in a tem-
perature-controlled heating bath (T = 150 8C). During the reaction,
the mixture was stirred at 500 rpm. At various reaction times, a
tube was taken out and quickly immersed in cold water to stop
the reaction. The two-phase reaction mixture was then subjected
to centrifugation (HeraeusTM, MegafugeTM 40, 4500 rpm for
10 min), and both phases were separated and collected. Aliquots
of the aqueous phase and the organic phase were withdrawn, fil-
tered when necessary [0.45 mm polytetrafluoroethylene (PTFE)
filter] , and analyzed by HPLC and GC-FID, respectively.

HMF formation in continuous microreactor experiments

Reactions were performed in a perfluoroalkoxy alkane (PFA) tube
with an internal diameter of 1.651 mm and a total length of 4.5 m.
To improve heat transfer, the tube was coiled around a cylindrical
shaped aluminum block (50 mm diameter), which was placed
inside a temperature-controlled oven (T = 150 8C). A schematic rep-
resentation of the setup is depicted in Figure 2. The aqueous and
organic solutions were introduced into the reactor by HPLC pumps
(Agilent 1100 with flow rate range of 0–5 mL min@1). The aqueous
feed contained the appropriate amount of thick juice (0.5 m SUC
equiv.) and H2SO4 (0.05 m). For experiments with NaCl (0.1 g mL@1),
the initial concentrations of SUC and H2SO4 in the aqueous phase
were 0.48 and 0.048 m, respectively. An aqueous/organic solvent
phase ratio of 1:4 was applied. Prior to entering the heating oven,
the two liquid phases were combined in a Y-type connector to
create a slug-flow. Owing to the hydrophobic nature of the tubing,
the aqueous phase formed droplets separated by a continuous or-
ganic phase. A back-pressure valve was placed at the outlet of the
reactor to adjust the pressure to 8–10 bar. Residence times were
set by adjusting the flow rates of the HPLC pump (see Table S7 in
the Supporting Information). The reactor typically reached a steady
state after approximately two times the residence time. Samples
were collected from the outlet, and the two-phase mixtures were
subjected to centrifugation (HeraeusTM, MegafugeTM 40,
4500 rpm for 10 min). Afterwards, both phases were separated,
and aliquots of aqueous phase and organic phase were withdrawn,
filtered when necessary (0.45 mm PTFE filter), and then analyzed by
HPLC and GC-FID, respectively.

Determination of yield and conversion

At the typical reaction conditions used in this study (T>100 8C),
SUC is immediately converted (inverted) into FRC and GLC in the
initial stage of the reactions.[6a] As such, the initial concentrations
of the individual sugars were set equal to the initial concentration
of SUC in the aqueous phase. For the biphasic reaction, it is known
that the solubility of FRC and GLC in the organic phase is very low
and therefore assumed negligible for conversion and yield calcula-
tions. However, a small amount of organic phase can dissolve into
the aqueous phase and vice versa, resulting in a volume changes
of both phases (Vinitial¼6 Vfinal). To compensate for changes in the vol-
umes of the organic phase and aqueous phase after reaction, a
factor R was applied, which is defined as the ratio of the final
volume to the initial volume. R was estimated by the software
package Aspen (see Table S6 in the Supporting Information). This
factor R is also used in the conversion and yield calculations. The
conversion of FRC and GLC including R are given in Equations (1)
and (2), respectively:
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XFRC ¼
NFRC;0 @ NFRC

NFRC;0
¼ V aqCFRC;aq;0 @ V aqRaqCFRC;aq

VaqCFRC;aq;0
ð1Þ

XGLC ¼
NGLC;0 @ NGLC

NGLC;0
¼ V aqCGLC;aq;0 @ V aqRaqCGLC;aq

VaqCGLC;aq;0
ð2Þ

Unlike the sugars, HMF is present in both the aqueous and organic
phase after reaction. The yield of HMF on a SUC basis is given in
Equation (3):

YHMF SUCð Þ ¼
NHMF;tot

2NSUC;0
¼ VorgRorgCHMF;org þ V aqRaqCHMF;aq

2VaqCSUC;0
ð3Þ

Because the conversion of GLC is very low (which in this work was
intentional), the yield of HMF can also be expressed through FRC
only (YHMF(FRC)), see Equation (4):

YHMF FRCð Þ ¼
NHMF;tot

NFRC;0
¼ VorgRorgCHMF;org þ V aqRaqCHMF;aq

V aqCFRC;0
ð4Þ

Similarly, the HMF selectivity can be expressed on a SUC [SHMF(SUC),
Eq. (5)] or FRC basis [SHMF(FRC), Eq. (6)]:

SHMF SUCð Þ ¼
YHMF SUCð Þ

XFRC þ XGLC

ð5Þ

SHMF FRCð Þ ¼
YHMF FRCð Þ

XFRC

ð6Þ

The carbon balance closure (CBC) is defined as total moles of
carbon in HPLC-detectable compounds (FRC, GLC, HMF, and in
some cases FA and LA) at a certain reaction time or residence time
divided by the moles of carbon in the feed [Eq. (7)]:

CBC ¼ mol C in HPLC detectable compounds
mol C in the feed

> 100 % ð7Þ

The partition coefficient (P) is defined as the ratio of the concentra-
tion of a component in the organic phase to the concentration of
the component in the aqueous phase. As an example, the partition
coefficient of HMF is given in Equation (8):

PHMF ¼
CHMF;org

CHMF;aq
ð8Þ
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