159 research outputs found

    Electrophoretic silica-coating process on a nano-structured copper electrode

    Get PDF
    A method for silica-coating at the nanoscale by electrophoretic deposition is presented here, using raw or grafted silica dispersions

    The good reactivity of lithium with nanostructured copper phosphide

    Get PDF
    In Li-ion battery technology, Li diffusion in the electrode is mainly limited by the quality of the interfaces. To take advantage of the large capacity gain offered by the transition metal phosphides (TMP) as negative electrode, a new self-supported TMP/Cu nanoarchitectured electrode concept is proposed. This specific design allows one to fine-tune control of both (TMP)/current collector and (TMP)/electrolyte interfaces of the electrode. This new electrode preparation process is based on an electrochemical templated synthesis of copper nanorods followed by a phosphorus vaporization. The P vapour reacts with the Cu nanorods leading to Cu3P nanorods. Preliminary electrochemical tests of the as-obtained Cu3P nanorods/Li half cell show the great interest of using such a nanostructured TMP electrode in a Li battery. These nanoarchitectured phosphide electrodes can sustain a C-rate (a full discharge in 1h) cycling without exhibiting any important reversible capacity loss for 20 cycles

    Laminar Python: tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python

    Get PDF
    Increasingly available high-resolution brain imaging data require specialized processing tools that can leverage their anatomical detail and handle their size. Here, we present user-friendly Python tools for cortical depth resolved analysis in such data. Our implementation is based on the CBS High-Res Brain Processing framework, and aims to make high-resolution data processing tools available to the broader community

    Surface-based characteristics of the cerebellar cortex visualized with ultra-high field MRI

    Get PDF
    Although having a relatively homogeneous cytoarchitectonic organization, the cerebellar cortex is a heterogeneous region characterized by different amounts of myelin, iron and protein expression profiles. In this study, we used quantitative T1 and T2* mapping at ultra-high field (7T) MRI to investigate the tissue characteristics of the cerebellar gray matter surface and its layers. Detailed subject-specific surfaces were generated at three different cortical depths and averaged across subjects to create averaged T1 and T2* maps on the cerebellar surface. T1 surfaces showed an alternation of lower and higher T1 values when going from the median to the lateral part of the cerebellar hemispheres. In addition, longer T1 values were observed in the more superficial gray matter layers. T2* maps showed a similar longitudinal pattern, but no change related to the cortical depths. These patterns are possibly due to variations in the level of myelination, iron and zebrin protein expression

    Swallow Tail Sign: Revisited

    Get PDF
    The loss of the radiologic swallow tail sign on MRI scans of the substantia nigra is a promising diagnostic marker of Parkinson disease (1), although its anatom-ic underpinning is unclear. An early influential study showed that the hyperintense inner part of the swallow tail sign on T2*-weighted images (STh) corresponds to iron-poor areas in substantia nigra and suggested it to equal nigrosome 1, the dopaminergic region affected earliest and strongest in Parkinson disease (2). This would render the STh a cellularly specific marker (2). However, recent postmortem tissue studies have chal-lenged this interpretation, reporting that nigrosome 1 is hypointense in T2*-weighted images (3,4). We com-bined three-dimensional histology with 7-T in vivo and postmortem MRI to demonstrate that nigrosome 1 and the radiologic STh are partially overlapping but distinct

    Revisiting Brain Atrophy and Its Relationship to Disability in Multiple Sclerosis

    Get PDF
    Brain atrophy is a well-accepted imaging biomarker of multiple sclerosis (MS) that partially correlates with both physical disability and cognitive impairment.Based on MRI scans of 60 MS cases and 37 healthy volunteers, we measured the volumes of white matter (WM) lesions, cortical gray matter (GM), cerebral WM, caudate nucleus, putamen, thalamus, ventricles, and brainstem using a validated and completely automated segmentation method. We correlated these volumes with the Expanded Disability Status Scale (EDSS), MS Severity Scale (MSSS), MS Functional Composite (MSFC), and quantitative measures of ankle strength and toe sensation. Normalized volumes of both cortical and subcortical GM structures were abnormally low in the MS group, whereas no abnormality was found in the volume of the cerebral WM. High physical disability was associated with low cerebral WM, thalamus, and brainstem volumes (partial correlation coefficients ~0.3-0.4) but not with low cortical GM volume. Thalamus volumes were inversely correlated with lesion load (r = -0.36, p<0.005).The GM is atrophic in MS. Although lower WM volume is associated with greater disability, as might be expected, WM volume was on average in the normal range. This paradoxical result might be explained by the presence of coexisting pathological processes, such as tissue damage and repair, that cause both atrophy and hypertrophy and that underlie the observed disability
    corecore