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The loss of the radiologic swallow tail sign on MRI 
scans of the substantia nigra is a promising diagnostic 

marker of Parkinson disease (1), although its anatom-
ic underpinning is unclear. An early influential study 
showed that the hyperintense inner part of the swallow 
tail sign on T2*-weighted images (STh) corresponds to 
iron-poor areas in substantia nigra and suggested it to 
equal nigrosome 1, the dopaminergic region affected 
earliest and strongest in Parkinson disease (2). This 
would render the STh a cellularly specific marker (2). 
However, recent postmortem tissue studies have chal-
lenged this interpretation, reporting that nigrosome 1 
is hypointense in T2*-weighted images (3,4). We com-
bined three-dimensional histology with 7-T in vivo and 
postmortem MRI to demonstrate that nigrosome 1 and 
the radiologic STh are partially overlapping but distinct.

Materials and Methods
In this secondary analysis of prospectively collected data, 
7-T in vivo MRI (5) was combined with 7-T postmor-
tem MRI, three-dimensional block-face imaging, and im-
munohistochemistry (6). The local ethics committees ap-
proved all studies.

From March to December 2017, in vivo T2*-weighted 
images with 0.4-mm isotropic resolution were acquired in 
three randomly chosen healthy volunteers with no contra-
indication to ultra-high-field MRI investigation to match 
the number of postmortem specimens (Fig 1) (5).

Postmortem T2*-weighted images were acquired, us-
ing a similar protocol and the same resolution as for in 
vivo images, of three whole heads (specimens 1, 7, and 
8 in a previous study [6]) and complemented by high-
quality histochemistry in the substantia nigra (Fig 2). 
Brain specimens from donors with no record of neuro-
logic disease were sourced through a whole-body dona-
tion program. Written informed consent for whole-body 
donation had been provided before death.

To assess intrarater reliability, one author (P.A.G., with 
9 years of experience in MRI in Parkinson disease) de-
lineated the STh twice on in vivo T2*-weighted images 
(Figs 1B, 2B).

A neuroanatomist (M.M., with 20 years of experi-
ence) and a trained research assistant (C. Jantzen, with 
1 year of experience) segmented areas with a high den-
sity of neuromelanin-pigmented dopaminergic neurons 
on block-face images (resolution, 150 × 150 × 200 μm3) 
while blinded to the STh delineation. Nigrosome 1 was 
defined as a subvolume with the characteristic “stripe” 
morphology (2) (Fig 1D, 1E). It agreed with the classic 
definition of nigrosome 1 based on low anticalbindin im-
munoreactivity (not shown here).

In vivo and postmortem T2*-weighted MRI scans 
and block-face images were affinely registered based on 
anatomic landmarks, including small vessels, outside the 
substantia nigra. Before comparing STh and nigrosome 1, 
segmentations were smoothed with a kernel reflecting the 
registration error (0.46 mm, Fig 1). One author (M.B., 
with 5 years of experience) assessed size differences using 
the Student t test. Two-tailed P < .05 was indicative of a 
statistically significant difference.

Results
Three female participants (mean age, 30 years ± 1 [SD]) 
and three postmortem brains (mean age, 78 years ± 3; 
two male donors) were evaluated.

Although the STh was ovoid-shaped for all partici-
pants, nigrosome 1 was consistently flat and disk-like (Fig 
1E). Nigrosome 1 was significantly thinner (P < .001) 
and longer (P = .003) than the STh (Fig 2F).

Coregistration of in vivo and postmortem T2*-
weighted MRI scans to block-face images showed that 
nigrosome 1 only partly overlapped with STh for all 
possible combinations of data sets across participants 
and specimens. Nigrosome 1 extended beyond the STh 
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Our study had limitations, including the small number of 
histologic samples and the age and sex differences between in 
vivo participants and donors of the postmortem specimens.

The neuroanatomic cellular underpinnings of the radiologic 
STh and its disappearance in Parkinson disease must be further 
investigated. The nonequivalence of STh and nigrosome 1 does 
not affect the value of STh as a late-stage Parkinson disease 
biomarker. However, a more accurate link of MRI features and 
the substantia nigra anatomy is expected to improve Parkinson 
disease diagnostics and disease monitoring.
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in anteroposterior and superoinferior directions (Fig 2F). On 
postmortem MRI scans and block-face images, nigrosome 1 
consistently appeared as a thin, dark stripe (Fig 2C, 2E).

Discussion
We showed that the widespread equation of the STh and ni-
grosome 1 is inaccurate because they are only partially over-
lapping. Therefore, STh and nigrosome 1 probably correspond 
to distinct structures and should not be used synonymously.

The hypointense appearance of nigrosome 1 on postmor-
tem T2*-weighted images, unlike the hyperintense STh, is 
consistent with findings of postmortem tissue studies (3,4). 
It is unclear why nigrosome 1 has not been reported as a  
hypointense structure on in vivo scans, but causes may in-
clude an insufficient contrast-to-noise ratio, image artifacts, 
or different contrast mechanisms in nigrosome 1 between in 
vivo and postmortem imaging.

Figure 1: Spatial relationship of the hyperintense inner part of the swallow tail sign on T2*-weighted images (STh) and nigrosome 1 (N1) revealed by a 
combination of in vivo MRI and postmortem three-dimensional (3D) histochemistry. (A, B) In vivo T2*-weighted images (T2*-WI) in a 29-year-old woman. The 
STh (arrow in B) was segmented as a hyperintense patch in the substantia nigra and is surrounded by larger hypointense structures that resemble the tail of a swal-
low (see swallow overlay in B). The boundary of the substantia nigra is indicated with long dashes, and the red nucleus is indicated with short dashes (B). (C, D) 
Postmortem 3D block-face images (BFI) obtained during histochemistry examination in a 75-year-old female donor. The dopaminergic region nigrosome 1 was 
segmented as a dark-pigmented stripe (arrow in D). The boundary of the substantia nigra is indicated with long dashes, and the red nucleus is indicated with short 
dashes. A low calbindin immunoreactivity in one specimen corroborated the nigrosome 1 segmentation (not shown). (E) An affine, landmark-based coregistration 
of in vivo and postmortem data enabled the comparison of the radiologic STh and histologically defined nigrosome 1. The registration accuracy was 0.193 mm ± 
0.012 (mean ± SD) between block-face and postmortem T2*-weighted images and 0.46 mm ± 0.06 (mean ± SD across data set combinations) between block-
face and in vivo images.
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