24 research outputs found

    Approche isotopique pour tracer la dynamique de l’eau et des nutriments dans les sols forestiers

    Get PDF
    La fertilité des sols forestiers est généralement estimée par l’étude des cycles de l’eau et des éléments nutritifs essentiels aux êtres vivants (cycles biogéochimiques). Parmi l’ensemble des méthodes d’étude de ces cycles, une approche innovante, complémentaire des études plus classiques, consiste à utiliser des traceurs géochimiques ou isotopiques. Les démarches expérimentales et résultats de quelques études récentes dans le domaine, utilisant des traceurs naturellement présents dans les écosystèmes (ex. 18O, 13C, 26Mg) ou artificiellement apportés (ex. enrichissements en Sr, Rb, 15N, 44Ca, 26Mg, 32P) seront présentés. Ces résultats seront discutés pour faire un point sur la pertinence d’utilisation de ces outils pour définir les sources, avoir accès au temps de résidence de l’eau et des éléments, et tracer les flux de nutriments qu’ils soient d’origine organique ou minérale, internes ou externes à l’écosystème

    Ultraluminous Infrared Galaxies

    Full text link
    Ever since their discovery in the 1970's, UltraLuminous InfraRed Galaxies (ULIRGs; classically Lir>10^12Lsun) have fascinated astronomers with their immense luminosities, and frustrated them due to their singularly opaque nature, almost in equal measure. Over the last decade, however, comprehensive observations from the X-ray through to the radio have produced a consensus picture of local ULIRGs, showing that they are mergers between gas rich galaxies, where the interaction triggers some combination of dust-enshrouded starburst and AGN activity, with the starburst usually dominating. Very recent results have thrown ULIRGs even further to the fore. Originally they were thought of as little more than a local oddity, but the latest IR surveys have shown that ULIRGs are vastly more numerous at high redshift, and tantalizing suggestions of physical differences between high and low redshift ULIRGs hint at differences in their formation modes and local environment. In this review we look at recent progress on understanding the physics and evolution of local ULIRGs, the contribution of high redshift ULIRGs to the cosmic infrared background and the global history of star formation, and the role of ULIRGs as diagnostics of the formation of massive galaxies and large-scale structures.Comment: Review article, published in "Astrophysics Update 2 - topical and timely reviews on astronomy and astrophysics". Ed. John W. Mason. Springer/Praxis books. ISBN: 3-540-30312-X. 53 pages, 5 figures. Higher quality figures available on reques

    Séquestration du carbone et de l’azote des feuilles de hêtre dans les associations organo-minérales du sol : Approches macroscopiques, nanométriques & moléculaires

    No full text
    Organo-mineral associations play a key role in the long-term sequestration of organic matter in forest soils. However, knowledge about the contribution of the different types of organo-mineral associations and the microbial processes involved in soil organic matter stabilisation is scant. To solve it, stable isotope techniques have been combined with the sequential density fractionation of organo-mineral associations. Isolated fractions were investigated in field and in lab, at different temporal (from 8 hours to 12 years) and spatial scales (macro-, submicron- and molecular scales).Four types of organo-mineral associations were distinguished: plant debris with little mineral attached, plant aggregates, microbial aggregates and mineral grains. Isotopically labeled beech leaf litters were tracked at a decadal time-scale to reveal transfers in between organo-mineral associations. Both litter-derived carbon and nitrogen entered the soil as plant fragments to progressively pass through plant and microbial aggregates. Aggregates appeared particularly meaningful for the stabilisation of litter-derived carbon and nitrogen at a decadal time-scale. Little of the litter-derived carbon and nitrogen was found quickly stabilized to mineral grains. Microbial activities appeared as a major controlling factor for the evolvement of organo-mineral associations, responsive for the transfers of litter-derived carbon and nitrogen. Indeed, plant debris colonized by microorganisms are progressively trapped into plant aggregates. As decomposition proceeds, plant aggregates disrupt into denser microbial aggregates. These aggregates are loaded with lesser organic matter, but enriched in stable microbial materials.Stabilisation by soil microorganisms has been studied at the macro-, submicronand molecular- scales, using mostly NanoSIMS and LC-IRMS. Microbial stabilization operated (i) directly through immobilization in microbial cells and, (ii) indirectly through large production of extracellular microbial products. By calibrating the NanoSIMS for accurate C/N ratios, extracellular microbial products have been shown to be stabilized onto organo-mineral associations without apparent control of the mineral-attached organic matter chemistry. The incorporation of 13C tracers into amino sugars, biomarkers of bacterial and fungal biomasses, revealed that living microorganisms grow where the resource is, but accumulate in microbial aggregates. Microbial biomasses moved from plant debris to microbial aggregates, likely along with the transfers of decaying litter residues as described above.This work points aggregates as meaningful organo-mineral associations for the sequestration of litter-derived carbon and nitrogen at the decadal time-scale. It also revealed the role of microorganisms in the transfers and stabilization of litterderived carbon and nitrogen within organo-mineral associations.Les associations organo-minérales jouent un rôle prépondérant dans la séquestration à long terme des matières organiques des sols forestiers, mais les contributions des différents types d’association organo-minérale à la stabilisation, ainsi que les processus microbiens qui en sont responsables, restent mal connus. Pour y remédier, des techniques de traçage isotopique ont été combinées à la séparation densitométrique séquentielle des associations organo-minérales. Ces dernières ont été investiguées in et ex situ, à différentes échelles spatiales (macroscopique, submicrométrique et moléculaire) et temporelles (de 8 heures à 12 ans).Quatre types d’association organo-minérale ont été distingués : les débris végétaux associés à quelques rares minéraux, les agrégats végétaux, les agrégats microbiens et les grains minéraux. Le traçage isotopique du carbone et de l’azote dérivés des litières de feuilles a mis en évidence, à l’échelle de la décennie, des transferts entre les différentes associations organo-minérales. Tous deux entrent dans le sol sous forme de fragments végétaux, puis migrent progressivement vers les agrégats végétaux et microbiens. Les agrégats apparaissent pertinents pour la stabilisation du carbone et de l’azote à l’échelle décennale. Une petite fraction du carbone et de l’azote apparaît rapidement stabilisée dans les grains minéraux denses. Nos observations du devenir du 15N indiquent que l’activité des microorganismes du sol est responsable de ces transferts. Les fragments de feuilles colonisés par les microorganismes sont progressivement incorporés dans les agrégats végétaux. A mesure que la décomposition se poursuit, les agrégats végétaux se disloquent pour former des agrégats plus stables, plus pauvres en matières organiques, plus enrichis en produits microbiens et plus compacts : les agrégats microbiens. La stabilisation microbienne a été étudiée aux échelles macroscopique, submicrométrique et moléculaire, principalement par NanoSIMS et LC-IRMS. Elle opère (i) directement par immobilisation dans les cellules microbiennes et (ii) indirectement via une abondante production de métabolites extracellulaires. La calibration des C/N obtenus par NanoSIMS a permis de déterminer qu’ils sont stabilisés dans les associations organo-minérales sans contrôle apparent de la chimie des matières organiques. L’incorporation du 13C dans les sucres aminés, biomarqueurs des biomasses bactériennes et fongiques, indique que les microorganismes vivants croissent où la ressource se trouve. Ils s’accumulent dans les agrégats microbiens via les processus de transfert précédemment évoqués. Ce travail souligne l’importance des agrégats pour la séquestration du carbone et de l’azote dérivés des litières à l’échelle de la décennie. Il met également en évidence le rôle des microorganismes dans les transferts et la stabilisation du carbone et de l’azote dérivés des feuilles au sein d’associations organo-minérales

    Séquestration du carbone et de l’azote des feuilles de hêtre dans les associations organo-minérales du sol : Approches macroscopiques, nanométriques & moléculaires

    No full text
    Organo-mineral associations play a key role in the long-term sequestration of organic matter in forest soils. However, knowledge about the contribution of the different types of organo-mineral associations and the microbial processes involved in soil organic matter stabilisation is scant. To solve it, stable isotope techniques have been combined with the sequential density fractionation of organo-mineral associations. Isolated fractions were investigated in field and in lab, at different temporal (from 8 hours to 12 years) and spatial scales (macro-, submicron- and molecular scales).Four types of organo-mineral associations were distinguished: plant debris with little mineral attached, plant aggregates, microbial aggregates and mineral grains. Isotopically labeled beech leaf litters were tracked at a decadal time-scale to reveal transfers in between organo-mineral associations. Both litter-derived carbon and nitrogen entered the soil as plant fragments to progressively pass through plant and microbial aggregates. Aggregates appeared particularly meaningful for the stabilisation of litter-derived carbon and nitrogen at a decadal time-scale. Little of the litter-derived carbon and nitrogen was found quickly stabilized to mineral grains. Microbial activities appeared as a major controlling factor for the evolvement of organo-mineral associations, responsive for the transfers of litter-derived carbon and nitrogen. Indeed, plant debris colonized by microorganisms are progressively trapped into plant aggregates. As decomposition proceeds, plant aggregates disrupt into denser microbial aggregates. These aggregates are loaded with lesser organic matter, but enriched in stable microbial materials.Stabilisation by soil microorganisms has been studied at the macro-, submicronand molecular- scales, using mostly NanoSIMS and LC-IRMS. Microbial stabilization operated (i) directly through immobilization in microbial cells and, (ii) indirectly through large production of extracellular microbial products. By calibrating the NanoSIMS for accurate C/N ratios, extracellular microbial products have been shown to be stabilized onto organo-mineral associations without apparent control of the mineral-attached organic matter chemistry. The incorporation of 13C tracers into amino sugars, biomarkers of bacterial and fungal biomasses, revealed that living microorganisms grow where the resource is, but accumulate in microbial aggregates. Microbial biomasses moved from plant debris to microbial aggregates, likely along with the transfers of decaying litter residues as described above.This work points aggregates as meaningful organo-mineral associations for the sequestration of litter-derived carbon and nitrogen at the decadal time-scale. It also revealed the role of microorganisms in the transfers and stabilization of litterderived carbon and nitrogen within organo-mineral associations.Les associations organo-minérales jouent un rôle prépondérant dans la séquestration à long terme des matières organiques des sols forestiers, mais les contributions des différents types d’association organo-minérale à la stabilisation, ainsi que les processus microbiens qui en sont responsables, restent mal connus. Pour y remédier, des techniques de traçage isotopique ont été combinées à la séparation densitométrique séquentielle des associations organo-minérales. Ces dernières ont été investiguées in et ex situ, à différentes échelles spatiales (macroscopique, submicrométrique et moléculaire) et temporelles (de 8 heures à 12 ans).Quatre types d’association organo-minérale ont été distingués : les débris végétaux associés à quelques rares minéraux, les agrégats végétaux, les agrégats microbiens et les grains minéraux. Le traçage isotopique du carbone et de l’azote dérivés des litières de feuilles a mis en évidence, à l’échelle de la décennie, des transferts entre les différentes associations organo-minérales. Tous deux entrent dans le sol sous forme de fragments végétaux, puis migrent progressivement vers les agrégats végétaux et microbiens. Les agrégats apparaissent pertinents pour la stabilisation du carbone et de l’azote à l’échelle décennale. Une petite fraction du carbone et de l’azote apparaît rapidement stabilisée dans les grains minéraux denses. Nos observations du devenir du 15N indiquent que l’activité des microorganismes du sol est responsable de ces transferts. Les fragments de feuilles colonisés par les microorganismes sont progressivement incorporés dans les agrégats végétaux. A mesure que la décomposition se poursuit, les agrégats végétaux se disloquent pour former des agrégats plus stables, plus pauvres en matières organiques, plus enrichis en produits microbiens et plus compacts : les agrégats microbiens. La stabilisation microbienne a été étudiée aux échelles macroscopique, submicrométrique et moléculaire, principalement par NanoSIMS et LC-IRMS. Elle opère (i) directement par immobilisation dans les cellules microbiennes et (ii) indirectement via une abondante production de métabolites extracellulaires. La calibration des C/N obtenus par NanoSIMS a permis de déterminer qu’ils sont stabilisés dans les associations organo-minérales sans contrôle apparent de la chimie des matières organiques. L’incorporation du 13C dans les sucres aminés, biomarqueurs des biomasses bactériennes et fongiques, indique que les microorganismes vivants croissent où la ressource se trouve. Ils s’accumulent dans les agrégats microbiens via les processus de transfert précédemment évoqués. Ce travail souligne l’importance des agrégats pour la séquestration du carbone et de l’azote dérivés des litières à l’échelle de la décennie. Il met également en évidence le rôle des microorganismes dans les transferts et la stabilisation du carbone et de l’azote dérivés des feuilles au sein d’associations organo-minérales

    Sequestration of carbon and nitrogen deriving from beech leaf litter within organo-mineral associations : a macroscopic, nanometric and molecular approach

    No full text
    Les associations organo-minérales jouent un rôle prépondérant dans la séquestration à long terme des matières organiques des sols forestiers, mais les contributions des différents types d’association organo-minérale à la stabilisation, ainsi que les processus microbiens qui en sont responsables, restent mal connus. Pour y remédier, des techniques de traçage isotopique ont été combinées à la séparation densitométrique séquentielle des associations organo-minérales. Ces dernières ont été investiguées in et ex situ, à différentes échelles spatiales (macroscopique, submicrométrique et moléculaire) et temporelles (de 8 heures à 12 ans).Quatre types d’association organo-minérale ont été distingués : les débris végétaux associés à quelques rares minéraux, les agrégats végétaux, les agrégats microbiens et les grains minéraux. Le traçage isotopique du carbone et de l’azote dérivés des litières de feuilles a mis en évidence, à l’échelle de la décennie, des transferts entre les différentes associations organo-minérales. Tous deux entrent dans le sol sous forme de fragments végétaux, puis migrent progressivement vers les agrégats végétaux et microbiens. Les agrégats apparaissent pertinents pour la stabilisation du carbone et de l’azote à l’échelle décennale. Une petite fraction du carbone et de l’azote apparaît rapidement stabilisée dans les grains minéraux denses. Nos observations du devenir du 15N indiquent que l’activité des microorganismes du sol est responsable de ces transferts. Les fragments de feuilles colonisés par les microorganismes sont progressivement incorporés dans les agrégats végétaux. A mesure que la décomposition se poursuit, les agrégats végétaux se disloquent pour former des agrégats plus stables, plus pauvres en matières organiques, plus enrichis en produits microbiens et plus compacts : les agrégats microbiens. La stabilisation microbienne a été étudiée aux échelles macroscopique, submicrométrique et moléculaire, principalement par NanoSIMS et LC-IRMS. Elle opère (i) directement par immobilisation dans les cellules microbiennes et (ii) indirectement via une abondante production de métabolites extracellulaires. La calibration des C/N obtenus par NanoSIMS a permis de déterminer qu’ils sont stabilisés dans les associations organo-minérales sans contrôle apparent de la chimie des matières organiques. L’incorporation du 13C dans les sucres aminés, biomarqueurs des biomasses bactériennes et fongiques, indique que les microorganismes vivants croissent où la ressource se trouve. Ils s’accumulent dans les agrégats microbiens via les processus de transfert précédemment évoqués. Ce travail souligne l’importance des agrégats pour la séquestration du carbone et de l’azote dérivés des litières à l’échelle de la décennie. Il met également en évidence le rôle des microorganismes dans les transferts et la stabilisation du carbone et de l’azote dérivés des feuilles au sein d’associations organo-minérales.Organo-mineral associations play a key role in the long-term sequestration of organic matter in forest soils. However, knowledge about the contribution of the different types of organo-mineral associations and the microbial processes involved in soil organic matter stabilisation is scant. To solve it, stable isotope techniques have been combined with the sequential density fractionation of organo-mineral associations. Isolated fractions were investigated in field and in lab, at different temporal (from 8 hours to 12 years) and spatial scales (macro-, submicron- and molecular scales).Four types of organo-mineral associations were distinguished: plant debris with little mineral attached, plant aggregates, microbial aggregates and mineral grains. Isotopically labeled beech leaf litters were tracked at a decadal time-scale to reveal transfers in between organo-mineral associations. Both litter-derived carbon and nitrogen entered the soil as plant fragments to progressively pass through plant and microbial aggregates. Aggregates appeared particularly meaningful for the stabilisation of litter-derived carbon and nitrogen at a decadal time-scale. Little of the litter-derived carbon and nitrogen was found quickly stabilized to mineral grains. Microbial activities appeared as a major controlling factor for the evolvement of organo-mineral associations, responsive for the transfers of litter-derived carbon and nitrogen. Indeed, plant debris colonized by microorganisms are progressively trapped into plant aggregates. As decomposition proceeds, plant aggregates disrupt into denser microbial aggregates. These aggregates are loaded with lesser organic matter, but enriched in stable microbial materials.Stabilisation by soil microorganisms has been studied at the macro-, submicronand molecular- scales, using mostly NanoSIMS and LC-IRMS. Microbial stabilization operated (i) directly through immobilization in microbial cells and, (ii) indirectly through large production of extracellular microbial products. By calibrating the NanoSIMS for accurate C/N ratios, extracellular microbial products have been shown to be stabilized onto organo-mineral associations without apparent control of the mineral-attached organic matter chemistry. The incorporation of 13C tracers into amino sugars, biomarkers of bacterial and fungal biomasses, revealed that living microorganisms grow where the resource is, but accumulate in microbial aggregates. Microbial biomasses moved from plant debris to microbial aggregates, likely along with the transfers of decaying litter residues as described above.This work points aggregates as meaningful organo-mineral associations for the sequestration of litter-derived carbon and nitrogen at the decadal time-scale. It also revealed the role of microorganisms in the transfers and stabilization of litterderived carbon and nitrogen within organo-mineral associations

    Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

    No full text
    Physical fractionation is a widely used methodology to study soil organic matter (SOM) dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF) and particle size-density fractionation (PSDF) on mineral soil samples from two European beech forests a decade after application of N-15 labelled litter. Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM). Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches

    NanoSIMS Study of Organic Matter Associated with Soil Aggregates: Advantages, Limitations, and Combination with STXM

    No full text
    International audienceDirect observations of processes occurring at the mineral-organic interface are increasingly seen as relevant for the cycling of both natural soil organic matter and organic contaminants in soils and sediments. Advanced analytical tools with the capability to visualize and characterize organic matter at the submicrometer scale, such as Nano Secondary Ion Mass Spectrometry (NanoSIMS) and Scanning Transmission X-ray Microscopy (STXM) coupled to Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS), may be combined to locate and characterize mineral-associated organic matter. Taking advantage of samples collected from a decadal N-15 litter labeling experiment in a temperate forest, we demonstrate the potential of NanoSIMS to image intact soil particles and to detect spots of isotopic enrichment even at low levels of N-15 application. We show how microsites of isotopic enrichment detected by NanoSIMS can be speciated by STXM-NEXAFS performed on the same particle. Finally, by showing how N-15 enrichment at one microsite could be linked to the presence of microbial metabolites, we emphasize the potential of this combined imaging and spectroscopic approach to link microenvironment with geochemical process and/or location with ecological function

    Assimilation and accumulation of C by fungi and bacteria attached to soil density fractions

    No full text
    International audienceSoil microorganisms play a key role in soil organic matter (SOM) dynamics, but little is known about the controls affecting the distribution of microbial biomass and their residues in soil. Here, a forested Cambisol topsoil was incubated with C-13-labeled glycine or beech leaves for 12 weeks prior to sequential density fractionation. The incorporation of the C-13 label in amino sugars (AS) was used to gain insight into bacterial and fungal assimilation of the substrates. AS derived from glycine or leaves were compared to total AS to investigate how microbial residues and active communities were distributed among soil density fractions.Bacteria slightly dominated leaf C assimilation, while a pronounced fungal dominance was observed for glycine. The glycine-derived AS and original AS were similarly distributed among the soil density fractions, both peaking in microbial aggregates (1.8-2.4 g cm(-3)). Leaf-derived AS were mostly found in association with the plant debris (<1.65 g cm(-3)). The ratios of substrate-derived AS C to substrate-derived C increased with soil fraction density for both glycine and leaves. The same pattern was observed with original AS C to soil fraction C ratios. We concluded that bacteria and fungi were most active where the resource was even though their residues accumulate mostly in microbial aggregates (1.8-2.4 g cm(-3)). We suggest that such accumulation might be attributed to (1) an increasing stabilization efficiency of microbial residues and (2) the progressive SOM transfer, from plant debris to microbial aggregates (1.8-2.4 g cm(-3))

    Interacting Controls of Pyrolysis Temperature and Plant Taxa on the Degradability of PyOM in Fire-Prone Northern Temperate Forest Soil

    No full text
    Tree taxa and pyrolysis temperature are the major controllers of the physicochemical properties of the resultant pyrogenic organic matter (PyOM) produced in fire-prone forests. However, we know little about how these controls determine the residence time of PyOM once introduced to soil. In this study, we tracked the fate of 13C-enriched red maple (RM) or jack pine (JP) wood and PyOM, produced over a range of temperatures (200, 300, 450, or 600 &deg;C) added to soil from a northern temperate forest in Michigan, USA. Pyrolysis temperature was the main controller of PyOM-C mineralization rates, with mean residence times (MRT) ranging from ~4 to 450 years for both taxa. The PyOM-C mineralization rates for both taxa and the pyrolysis temperature correlated positively with PyOMw (leachable C content); however, the potential PyOMw contribution to net PyOM-C mineralization was lower for JP (14&ndash;65%) than RM (24&ndash;84%). The correlation between PyOMw and mineralization rate was strongest where carbonization and the thermochemical conversion of carbohydrates and non-lignin phenols was most pronounced during pyrolysis for each taxa (300 &deg;C for JP and 450 &deg;C for RM). Contrary to expectations, the addition of a labile C source, sucrose, to the soil did not enhance the decomposition of PyOM, indicating that soil microbes were not energy limited in the soil-PyOM system studied (regardless of pyrolysis temperature). Our results showed that while the first-order control on PyOM decomposition in this soil is pyrolysis temperature, wood taxa did affect PyOM-C MRT, likely in part due to differences in the amount of reactive water-soluble C present in PyOM
    corecore